
Salinas–User’s Notes

Garth Reese∗ Dan Segalman† Manoj K. Bhardwaj‡

Kenneth Alvin§ Brian Driessen Kendall Pierson¶ Timothy Walsh‖

Sandia National Laboratories
Albuquerque, NM 87185-0847

April 11, 2006

∗Phone: 845-8640
†Phone: 844-0972
‡Phone: 844-3041
§Phone: 844-9329
¶Phone: 284-5894
‖Phone: 284-5374

Revision: 1.48

Date: 2005/11/17 20:11:14

Latest Software Release: 2.3

Abstract

Salinas provides a massively parallel implementation of structural dynam-
ics finite element analysis, required for high fidelity, validated models used in
modal, vibration, static and shock analysis of weapons systems. This document
provides a users guide to the input for Salinas. Details of input specifications
for the different solution types, output options, element types and parameters
are included. The appendices contain detailed examples, and instructions for
running the software on parallel platforms.

(this page intentionally blank)

Salinas User Notes

Contents

1 Introduction 1

2 The Salinas Input File 3
2.1 SOLUTION . 3

2.1.1 Multicase . 3
2.1.2 A Note On Time Stepping In Multicase Solutions 6
2.1.3 Ceigen . 6
2.1.4 Checkout . 8
2.1.5 CJdamp . 8
2.1.6 Continuation . 9
2.1.7 Craig-Bampton Reduction . 11
2.1.8 Directfrf . 12
2.1.9 Dump . 13
2.1.10 Eigen . 13
2.1.11 Eigenk . 15
2.1.12 Buckling . 15
2.1.13 Modalfrf . 17
2.1.14 Modalranvib . 19
2.1.15 Modalshock . 22
2.1.16 Modaltransient . 23
2.1.17 NLStatics . 24
2.1.18 NLTransient . 25
2.1.19 Receive Sierra Data . 27
2.1.20 Statics . 27
2.1.21 Subdomain Eigen . 28
2.1.22 Tangent . 28
2.1.23 Transhock . 29
2.1.24 Transient . 30
2.1.25 TSR Preload . 32

2.2 Solution Options . 35
2.2.1 ReStart – option . 35
2.2.2 NOX . 37
2.2.3 Solver . 38
2.2.4 Lumped – option . 40
2.2.5 Constraintmethod – option 40

i

2.2.6 Scale – option . 40
2.2.7 scalarstructuralacoustics – option 40

2.3 PARAMETERS . 41
2.4 FETI . 46

2.4.1 Corner Algorithms . 48
2.4.2 Levels of Diagnostic Output 48

2.5 Clop . 50
2.6 CLIP . 52
2.7 ECHO . 52

2.7.1 Mass Properties . 54
2.7.2 Mpc . 54

2.8 OUTPUTS . 55
2.8.1 Maa . 56
2.8.2 Kaa . 56
2.8.3 Faa . 56
2.8.4 ElemEigChecks . 56
2.8.5 Elemqualchecks . 56
2.8.6 Displacement . 57
2.8.7 Velocity . 58
2.8.8 Acceleration . 58
2.8.9 Strain . 58
2.8.10 Stress . 59
2.8.11 VonMises . 59
2.8.12 VRMS . 60
2.8.13 Energy . 60
2.8.14 GEnergies . 60
2.8.15 Mesh Error . 61
2.8.16 Harwellboeing . 61
2.8.17 Mfile . 62
2.8.18 Force . 62
2.8.19 rhs . 62
2.8.20 EForce . 62
2.8.21 Residuals . 64
2.8.22 Resid only . 64
2.8.23 EOrient . 65
2.8.24 Pressure . 65
2.8.25 APressure . 66
2.8.26 APartVel . 66
2.8.27 KDiag . 66
2.8.28 Warninglevel . 67

ii

2.9 HISTORY . 69
2.10 FREQUENCY . 70
2.11 FILE . 71

2.11.1 geometry file . 71
2.11.2 Linesample . 72
2.11.3 sierra input file . 73
2.11.4 Additional Comments About Output 73

2.12 BOUNDARY . 74
2.12.1 Prescribed Displacements . 74
2.12.2 Prescribed Accelerations . 75
2.12.3 Node List File . 76

2.13 LOADS . 76
2.13.1 Thermal Loads . 79
2.13.2 Consistent Loads . 81
2.13.3 Time Varying Loads . 82
2.13.4 Frequency Dependent Loads 82

2.14 Load . 83
2.15 RanLoads . 83
2.16 Contact Data . 85
2.17 Tied Surfaces . 85
2.18 RigidSet . 89
2.19 BLOCK . 90

2.19.1 Block Parameters . 90
2.19.2 General Block Parameters . 91

2.20 Macroblock . 93
2.21 MATERIAL . 96

2.21.1 Isotropic Material . 96
2.21.2 Anisotropic Material . 96
2.21.3 Orthotropic Material . 97
2.21.4 Stochastic Material . 98
2.21.5 Linear Viscoelastic Material 99
2.21.6 Acoustic Material . 101
2.21.7 Temperature-Dependent Material Properties 102
2.21.8 Density . 103
2.21.9 CJetaFunction . 104

2.22 COORDINATE . 104
2.23 FUNCTION . 106

2.23.1 Linear Functions . 107
2.23.2 Functions using Tables . 108
2.23.3 Polynomial Functions . 109

iii

2.23.4 LogLog Functions . 110
2.23.5 Random Functions . 110
2.23.6 User Defined Functions . 111

2.24 MATRIX-FUNCTION . 114
2.25 Table . 116
2.26 CBModel . 117
2.27 SENSITIVITY . 121
2.28 DAMPING . 125

2.28.1 Nonlinear transient solutions with damping 126
2.29 EXTERIOR . 127
2.30 NOX . 127
2.31 LOCA . 128

3 Elements 132
3.1 Hex8 . 132
3.2 Hex20 . 132
3.3 Wedge6 . 132
3.4 Wedge15 . 133
3.5 Tet4 . 133
3.6 Tet10 . 133
3.7 QuadT . 133
3.8 Quad8T . 133
3.9 TriaShell . 135
3.10 Tria3 . 135
3.11 Tria6 . 136
3.12 Offset Shells . 136
3.13 HexShell . 137
3.14 Beam2 . 139
3.15 OBeam . 141
3.16 Truss . 141
3.17 ConMass . 141
3.18 Spring . 142

3.18.1 Spring Parameter Values . 143
3.19 RSpring . 143
3.20 Spring3 - nonlinear cubic spring . 144
3.21 Dashpot . 145
3.22 Hys . 146
3.23 Shys . 147
3.24 Iwan . 149
3.25 Joint2G . 149

iv

3.25.1 Specification . 150
3.25.2 Constitutive Behavior . 151

3.26 Gap . 157
3.27 Gap2D . 160
3.28 GasDmp . 163
3.29 MPC . 163
3.30 RROD . 165
3.31 RBar . 166
3.32 RBE2 . 166
3.33 RBE3 . 166
3.34 Superelement . 169
3.35 Dead . 173

4 Stress/Strain Recovery 174
4.1 Stress/Strain Truth Table . 174
4.2 Solid Element Stress/Strain . 174
4.3 Shell Element Stress/Strain . 174
4.4 Line Element Stress/Strain . 177

5 Troubleshooting 178
5.1 Stand-Alone Tools . 178

5.1.1 Grope . 178
5.1.2 Verde . 178

5.2 Using Salinas To Troubleshoot . 179
5.2.1 Using The Node List File For Debugging Subdomains With

ZEMs . 179
5.2.2 Identifying Problematic Subdomains 180
5.2.3 Problematic Elements and Connectivity 180

5.3 Troubleshooting FETI Issues . 182
5.3.1 Introduction . 182
5.3.2 Standard FETI Block . 182
5.3.3 Memory . 183
5.3.4 Local Rigid Body Modes . 184
5.3.5 Global Rigid Body Modes . 185

6 Acknowledgments 187

References 188

v

A Salinas Example Input Files 191
A.1 An Eigenanalysis Input File . 191
A.2 An Anisotropic Material Input File 193
A.3 A Multi-material Input File . 195
A.4 A Modaltransient Input File . 199
A.5 A Modalfrf Input File . 201
A.6 A Directfrf Input File . 203
A.7 A Statics Input File . 205

B Running Salinas on serial UNIX platforms 207

C Running Salinas in Parallel 209
C.1 Number of Processors Needed . 210
C.2 Use nem slice (or yada) to load balance the model 210
C.3 Janus Work Space . 211
C.4 Using Nem spread . 211
C.5 Salinas FILE Section . 213
C.6 Running Salinas . 213
C.7 Using Nem join . 214

D Execution of Salinas on Various Platforms 215
D.1 Logging On . 215
D.2 Location Of Salinas Files . 215
D.3 Location Of SEACAS/ACCESS Files 215
D.4 Workspace Area . 215
D.5 Submitting A Job . 216
D.6 Checking Job Status . 217
D.7 Sample Scripts . 217

D.7.1 ASCI White . 217
D.7.2 ASCI Q . 218
D.7.3 ASCI Red (SCN and SRN) 219
D.7.4 CPLANT (SCN or SRN) . 219
D.7.5 ICC (SCN or SRN) . 219
D.7.6 Rogue . 220

D.8 Special Considerations . 220

E CF FETI 223
E.1 Features of CF solver . 223
E.2 Limitations of the Solver . 223

vi

Index 227

vii

List of Figures

1 Example KDIAG output. 67
2 Search Tolerance definition . 88
3 Coordinate System Definition Vectors 105
4 Linear function #3. ”illegal fun” . 108
5 Linear function #5. ”extrap fun” . 108
6 Example Gaussian output. 112
7 Craig-Bampton Reduction . 122
8 QuadT Element . 134
9 Quad8T Element . 134
10 Tria6 Element . 137
11 Hys element parameters . 148
12 Iwan Constitutive Model . 152
13 Hysteresis Microslip Variation with β 154
14 Hysteresis Macroslip Variation with β 154
15 Eplas Model . 156
16 Gap element Force-Deflection Curve 159
17 Mass bouncing off a Gap . 161
18 Gap2D force diagram . 162
19 Tria3 Stress Recovery . 177
20 Single Spring element . 181
21 Truss Decomposition Issues . 182

viii

List of Tables

1 Salinas Solution Types . 4
2 Multicase Parameters . 5
3 Ceigen Tests . 7
4 Salinas Solution Options . 35
5 Some useful combinations of units. 42
6 Beam Attribute Ordering . 42
7 FETI Section Options . 47
8 Corner Options . 49
9 Prt Debug Options . 50
10 CLOP Section Options . 51
11 ECHO Section Options . 53
12 Data Files Written Using the Mfile Option 63
13 Element Orientation Outputs . 65
14 Element Orientation Interpretation 66
15 OUTPUT Section Options . 68
16 Contact Data Parameters . 86
17 Tied Surface Parameters . 88
18 RigidSet Parameters . 89
19 General Block Parameters . 91
20 Non-Structural Mass Units . 93
21 Element Attributes . 94
22 Default Parameters for Viscoelastic Materials 100
23 Material Stiffness Parameters . 103
24 Random function parameters . 111
25 Predefined RTC variables . 114
26 TABLE Section Options . 116
27 CBModel Parameters . 118
28 Data output for Craig-Bampton Reduction 120
29 DAMPING Section Options . 125
30 NOX Nonlinear Solver Options . 127
31 LOCA Continuation Options . 129
32 LOCA Continuation Options Continued 130
33 Older Iwan 4-parameter model . 151
34 Revised Iwan 4-parameter model . 153
35 Element Stress Truth Table . 175
36 Determining Number Of Processors Needed 210
37 How To Log On To Various Platforms 215
38 Where To Put Files On Various Platforms 216

ix

39 How To Submit Jobs On Various Platforms 216
40 How To Check Job Status On Various Platforms 217
41 CF FETI Parameter Modifications 224

x

Salinas

Salinas provides a massively parallel implementation of structural dynamics fi-
nite element analysis. This capability is required for high fidelity, validated models
used in modal, vibration, static and shock analysis of weapons systems. General
capabilities for modal, statics and transient dynamics are provided.

This document describes the input for the Salinas program. Examples of in-
put specifications are scattered throughout the document. Appendix A provides
several full input files. Appendix B provides instructions on invoking Salinas on a
serial UNIX platform. Appendix C details how to execute Salinas on the ASCI-red
machine, janus.

The name for Salinas is taken from a series of ancient Tewa Indian pueblos to the
east of Albuquerque, New Mexico. These pueblos have been a source of culture and
of salt for centuries. They were among the first settlements for Spanish explorers in
the region.

1 Introduction – Input File

The input file contains all the directives necessary for operation of the program.
These include information on the type of solution, the name of the exodus file
containing the finite element data, details of the material and properties within the
element blocks, which boundary conditions to apply, etc. Details of each of these
sections are covered below.

Typically, the input file has an extension of “.inp”, although any extension is per-
mitted. If the “.inp” extension is used, Salinas may be invoked on the input
without specifying the extension.

The input file is logically separated into sections. Each section begins with a keyword
(Solution, BLOCK, etc), and ends with the reserved word end. Words within
a section are separated with “white space” consisting of tabs, spaces, and linefeeds.
Comments are permitted anywhere within the file, and follow the C++ convention,
i.e. a comment begins with the two characters “//” and ends with the end of the
line.∗

Except for data within quotes, the input file is case insensitive. The software converts
everything to lower case unless it is enclosed in quotes. Either the single quote ’ or
the double quote " may be used. The quotes may be nested, e.g. ’a string with
"embedded" quotes’, but only with the other style mark.

∗To be safe, define comments as “//” followed by a space.

2 1 INTRODUCTION

The input parser supports nested includes. This is done using the #include com-
mand. This is the only command the parser recognizes. Files may be included to
any depth. As an example,

#include english_materials

The #include may occur anywhere on the line (though for readability and con-
sistency we recommend that it be the start of the line). The file name must im-
mediately follow and should NOT be enclosed in quotes. Case sensitivity will be
preserved. Summarizing, a minimum of two files are needed to run Salinas , namely,
a text input file, e.g. example.inp, and an Exodus input file,1 e.g. example.exo,
which contains the finite element model. The finite element model is specified in
example.inp as the geometry file (see section 2.11).

Each of the Salinas input sections is described in the following section.

3

2 The Salinas Input File

2.1 SOLUTION

The solution section determines which solution method, and options are to be
applied to the model. The available solution types are shown in Table 1. Relevant
options are shown in Table 4, and are described in section 2.2.

2.1.1 Multicase

All of the solution methods of table 1 may be a part of a multicase solution. This
allows the user to specify multiple steps in a solution procedure. For example, there
can be a static preload, a computation of the updated tangent stiffness matrix, and
a linearized eigen analysis. The syntax for multicase solutions is similar to that for
single cases, but each solution step is delineated by the “case” keyword. In addition,
any of the modal solutions must be preceded by an eigen analysis and eigen keywords
are no longer recognized as part of the solution.

In a multicase solution, the system matrices (mass, stiffness and damping) will
typically be computed only once. Matrix updates between solutions may be specified
by selecting the tangent keyword (see section 2.1.22).

Multicase Parameters. Many of the solution parameters are specific to a partic-
ular solution type. For example, time step parameters are meaningless in a modal
solution. However, some options apply more generally. These parameters, listed
in Table 2, may be specified either above the case control sections, or within the
section. The specification above the case control section is the default value. Spec-
ifications within the case sub-blocks apply only to that sub-block. In the example
below, the restart options are thus “none” for most subcases, but “read” for the
eigen analysis and auto for the linear transient.†

Multicase Example. In the example which follows, a nonlinear statics compu-
tation is followed by a tangent stiffness matrix update. The updated matrix is
then used in an eigen analysis. Two sets of exodus output files will be written.
Output from the statics calculation will be in files of the form ‘example-nls.exo’.
Eigen results will be in the form ‘example-eig.exo’. The tangent solution normally
produces no output in the exodus format.

† These features are not yet fully implemented in release 2.0. Currently only one restart or
solver option is recognized for all solutions.

4 2 THE SALINAS INPUT FILE

Table 1: Salinas Solution Types
Solution Type Description Parameters
buckling buckling eigensolution nmodes, shift
cbr Craig-Bampton reduction nmodes, shift
ceigen complex eigen
checkout skip large matrix and solves
cjdamp modal damping contributions
continuation nonlinear parameter continuation LOCA
directfrf direct frequency response
dump form matrices only
eigen real eigensolution nmodes, shift, untilfreq
eigenk real eigensolution of K nmodes

(seldom useful)
modalfrf frequency response nmodes, usemodalaccel, nrbms

using modal displacement
or modal acceleration

modalranvib random vibration eigen parameters
using modal superposition noSVD

modalshock shock response spectra using nmodes,
modal approximate implicit time step, nsteps, nskip, flush
transient analysis srs damp
(unimplemented)

modaltransient transient analysis nmodes,
using modal superposition time step, nsteps, nskip, flush

NLstatics nonlinear statics max newton iterations,tolerance
num newton load steps,
update tangent

NLtransient implicit nonlinear transient time step, nsteps, nskip, rho, flush,
analysis max newton iterations,tolerance

old transient implicit transient analysis time step, nsteps, nskip, rho, flush
(acceleration based) (can include sensitivity analysis)

Receive Sierra Data coupling to Sierra
statics static stress
subdomain eigen subdomain eigenanalysis nmodes

(ONLY for debug)
tangent compute tangent matrices (multicase only)
transhock shock response spectra using time step, nsteps, nskip, flush

direct implicit transient srs damp
analysis

transient implicit transient analysis time step, nsteps, nskip, rho, flush
tsr preload thermal structural response file (multicase only)

2.1 SOLUTION 5

Table 2: Multicase Parameters
These parameters may be specified as defaults above the case specifications, or they
may be specified for each subcase to which they apply.

Parameter Description Options
restart Restart options see section 2.2.1
solver selection of solver see section 2.2.3
scale If set to yes, turns diagonal scaling on. see section 4
scalarstructuralacoustics Requests a structural acoustic simulation

Solution
restart=none
title=’example multicase’
case ’nls’

nlstatics
load=10

case ’tangent’
tangent

case ’eig’
eigen
restart=read

case ’trans1’
transient
restart=auto
time_step 1e-8 1e-6
nsteps 100 4000
flush 50
rho=0.9
load=20

case ’trans2’
transient
restart=auto
time_step 1e-4
nsteps 200
flush 10
load=20

END

The case keyword must always be followed by a label. The label is used in
the output file name. The case keyword is also used to divide parameters of each

6 2 THE SALINAS INPUT FILE

solution type.
The load keyword is used within a solution step to indicate which loads to

apply during a solution. In the example above, load ’10’ will be applied during the
nonlinear statics calculation. During a multicase solution the loads section (found
elsewhere in the file) will be ignored. See paragraph 2.13 for information on the
loads section or paragraph 2.14 for information on the load section of the input
file.

2.1.2 A Note On Time Stepping In Multicase Solutions

In the multicase example provided above, compare cases ‘trans1’ and ‘trans2’. It is
important to note that case ‘trans1’ will step through 100 steps of time at a step size
of 1e-8, then step through 4000 steps at a step size of 1e-6. Assuming the calculation
starts at time=0, the final time value of case ‘trans1’ will be 1e-8*100 + 1e-6*4000
= 0.004001. Case ‘trans2’ will start at 0.00400099 and run an additional 200 time
steps at a step size of 1e-4. This will end at a time value of 0.024001. (NOTE: This
was not the default behavior for Salinas versions 1.2.1 or earlier).

2.1.3 Ceigen

The Ceigen keyword is used to select complex eigen analysis. This computes the
solution to the quadratic eigenvalue problem,(

K + Dλ + Mλ2
)

u = 0 (1)

This capability is available in release 1.2.
The following table gives the parameters needed for complex eigen analysis.

Parameter Argument Default
nmodes Integer 100
viscofreq Real 1e-6

The nmodes keyword indicates the number of modes to compute in the quadratic
eigenvalue analysis. These modes are computed (and reported) as complex conjugate
pairs.

The optional viscofreq keyword indicates the frequency at which the damping
properties of viscoelastic materials will be computed. It must be non-negative. The
viscofreq parameter can be very confusing. In particular, viscoelastic materials
typically have high damping at lower frequencies, and lower damping at high fre-
quencies. The viscofreq parameter sets a frequency from which we estimate all

2.1 SOLUTION 7

Table 3: Ceigen Tests
Name Description
ceig stiffness proportional damping
ceig visco viscoelastic damping
ceig dash dashpot damping
steel in foam complex mixed materials

of the viscoelastic damping. Thus, if viscofreq is small, the damping is large.
In particular, if viscofreq is below the glass transition frequency, then damping
appropriate to the low frequency modes will be used. This high value of damping
is applied to the entire spectrum. It is generally better to over-estimate viscofreq
than to underestimate it.

The reason for this difficulty is that even linear viscoelastic materials generate
a more complex equation than that shown in equation 1. With a single term in
the Prony series, the equation of motion for a damped viscoelastic structure can be
written in the frequency domain.(

K + D
s

s + ωg
+ Ms2

)
u = f(s) (2)

Where s is the Laplace transform variable and ωg = 1/τ is the reciprocal of the
relaxation constant. Clearly this system is not a simple quadratic in s. Effectively,
viscofreq approximates this system with the linearized system below.(

K + D
s

2π · viscofreq + ωg
+ Ms2

)
u = f(s) (3)

Computation of quadratic eigenmodes is much more difficult than real eigen
analysis. The system of equations is more difficult, and more “tricks” must be used
to resolve issues that are generated. Even the post processing can be complicated.
Like real eigen analysis, one must request displacement output in the “output”
section (see 2.8.6). Now the output file contains 12 separate fields (six real and six
imaginary) for the complex results. Few post processing tools know what to do with
these results. More details are provided in section 1.9 of the theory manual.

Because of the difficulties with complex eigen analysis, it is important to under-
stand the problems for which we have evaluated and tested it. The tests in the test
suite are listed in Table 2.1.3.

8 2 THE SALINAS INPUT FILE

2.1.4 Checkout

The checkout solution method tests out various parts of the code without forming
the system matrices or solving the system of equations. This solution method may
be used to check input files for consistency and completeness on a serial platform
before allocating expensive resources for a full solution.

2.1.5 CJdamp

The CJdamp solution provides a method of computation of the equivalent modal
damping terms introduced from material damping in lightly damped visco elastic
materials. It is based on a development by Conor Johnson et al.2 It is an approxi-
mate method which assumes that the mode shapes and frequencies are not modified
by the damping. The modal damping is simply related to the fraction of energy in
block.

The CJdamp method is effectively a postprocessing step following an eigen
analysis. For each of the modes in the eigen analysis, a strain energy is computed
on an element basis. These are summed at the block level.

SEi
j =

in block j∑
elem

φT
i Kelemφi (4)

The total strain energy TSE is just the sum of the contributions from all blocks.
We define the block strain energy ratio for mode i as,

Ri
j = SEi

j/TSE (5)

The CJdamp contribution for the modal damping of mode i, is given by,

ζi =
1
2

∑
j

Ri
jηj(fi) (6)

Where etaj(fi) is the CJetaFunction contribution from block j evaluated at the
natural frequency of mode i (see section 2.21.9).

Note that cases following the CJdamp solution will include this damp-
ing as part of their damping calculation.

Example,

2.1 SOLUTION 9

SOLUTION
case eig

eigen nmodes=30
case cjd

cjdamp
case frf

modalfrf
END

2.1.6 Continuation

Continuation is the process of tracking a nonlinear static solution as system param-
eters are varied, in other words, computing the curve u(λ) defined by

r(u, λ) = p(u, λ)− f(u, λ) = 0 (7)

where p and f are as defined in (16). The system parameter λ may represent a
component of an external applied load or moment, an element attribute, a material
property, or the total external force. This last case is similar to the load stepping
procedure for nonlinear static solutions defined in Section 2.1.17, and continuation
can be viewed as a generalization of the load stepping procedure to a variety of
system parameters.

Numerically, points along the continuation curve u(λ) are computed using the
LOCA (Library of Continuation Algorithms) library which uses the NOX nonlinear
solver to compute each point on the curve. While all of the capabilities of this library
are too numerous to list here (see http://software.sandia.gov/nox for more
details), three important capabilities for structural mechanics problems are pseudo-
arclength continuation, automated eigenanalysis along the continuation path, and
bifurcation tracking. Pseudo-arclength continuation is a continuation algorithm that
reparameterizes the continuation curve with respect to an approximate arclength,
i.e., u(λ) → (u(s), λ(s)). This is useful when the continuation curve as a function of
the parameter λ folds over and becomes multi-valued as in snap-through or buckling.
Numerically, this is implemented by adjoining the equations r(u, λ) = 0 with an
additional scalar equation that constrain the Newton updates to be orthogonal to
an approximate tangent to the continuation curve.

The fold-over point of the continuation curve is called a fold or turning point
bifurcation, and represents a qualitative change in the dynamics of the system (for
example, in snap-through or buckling, the system becomes unstable at this point).
It occurs when the system Jacobian (tangent stiffness matrix) becomes singular.

10 2 THE SALINAS INPUT FILE

LOCA has the capability to track this bifurcation point in a second parameter µ,
yielding a curve in (λ, µ) space upon which the bifurcation occurs. In addition to
tracking turning point bifurcations, LOCA can track pitchfork (symmetric buckling)
and Hopf (onset of oscillations) bifurcations.

All three bifurcations are signaled by the real part of an eigenvalue of the system
passing through zero at the bifurcation point. For turning point and pitchfork
bifurcations, the eigenvalue is real near the bifurcation point, whereas for the Hopf
the eigenvalue is complex with a nonzero imaginary part at the bifurcation. LOCA
has the capability to compute the eigenvalues of the system at each point along the
continuation curve using the Anasazi eigensolver package facilitating the location of
bifurcation points.

The continuation case is selected by supplying the continuation keyword in the
SOLUTION block. Any valid NLStatics parameter is available for continuation
as well, with two important differences. The num newton load steps keyword
is not available since the continuation process implements this functionality in a
more general way, and the tolerance is replaced by four tolerances that allow
more fine-grained control of the convergence criteria. Additional parameters that
can be set in the SOLUTION block are

Parameter Argument Default
residual relative tolerance Real 1e-6
residual absolute tolerance Real 1e-6
update relative tolerance Real 1e-6
update absolute tolerance Real 1e-6

Keywords residual relative tolerance, residual absolute tolerance, up-
date relative tolerance, and update absolute tolerance supply relative
and absolute tolerances controlling the convergence criteria of each nonlinear solve
along the continuation curve. The nonlinear solve is considered converged if

‖r‖2 < ‖f0‖2εr + εa (8)

and
‖∆u‖2 < ‖u0‖2εr + εa (9)

where εr, εa are the relative and absolute tolerances, r is the current nonlinear
residual, f0 is the initial external force for that continuation step, ∆u is the update
to the solution components, and u0 is the initial solution for that continuation step.
Note that both of these conditions must be satisfied for convergence, not either of
them as in the case of NLStatics.

All of the remaining options controlling the continuation and bifurcation tracking
algorithms are placed in the LOCA block described in Section 2.31.

2.1 SOLUTION 11

Note: Currently, only one continuation case is allowed in an input file. In the
future, multiple cases will be supported. However, multiple continuation cases can be
simulated using the restart capability described in Section 2.31. Also, the parameter
NegEigen should be supplied in the PARAMETERS block (Section 2.3) to
allow negative continuation parameter values to be saved in the output Exodus
file (if this is not specified, Salinas will convert all negative parameter values to
zero). Finally, incorporation of the system mass matrix into the Hopf tracking and
eigenanalysis using Anasazi is currently not complete.

2.1.7 Craig-Bampton Reduction

It can be advantageous to reduce a model to it’s interface degrees of freedom. This
is very important in satellite work, where the model of the satellite may be much
larger than the model of the remainder of the missile. Reduction of the satellite
model to a linearized, Craig-Bampton model makes it possible to share the dynamic
properties of the model without requiring details of the interior. There are many
types of component mode synthesis techniques (or CMS), of which the Craig-
Bampton approach is one of the more popular. In this approach the model is
reduced to a combination of fixed interface and constraint modes. The fixed interface
modes are eigenvectors of the system with all interface degrees of freedom clamped.
The constraint modes are the deformations introduced when one interface degree of
freedom receives a unit displacement, and all other interface degrees of freedom are
zero.

The CBR solution reduces an entire structural model to its reduced system
and transfer matrices. Parameters are listed in the table below, and correspond
to the parameters required for an eigen analysis (section 2.1.10). In addition, a
CBModel section must be defined elsewhere (see section 2.26). Any boundary
conditions specified are applied before reducing the model. An example is provided
below.

Parameter Type Argument
nmodes integer number of constraint modes
shift Real negative shift

The method will write system matrices and general information. No model file data
will be written.

SOLUTION
case cbr
cbr

12 2 THE SALINAS INPUT FILE

nmodes=20 shift=-4e6
END

Note the following limitations for the CBR method.

• In serial, no MPCs may share nodes with interface nodes. Otherwise
the MPCs may eliminate the dofs that should be retained. For par-
allel domain decomposition solvers (such as FETI), this restriction is
relaxed.

• Parallel solvers require a large negative shift. This is required to ensure
that all subdomains are nonsingular.

• The entire reduced order model and associated transfer matrix must fit
into memory. On a parallel machine, this memory is required on every
processor. The model dimension is the sum of the number of constraint
and fixed interface modes.

2.1.8 Directfrf

Option directfrf is used to perform a direct frequency response analysis. In other
words, we compute a solution to the Fourier transform of the equations of motion,
i.e. (

K + iωC − ω2M
)

u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier trans-
form of the applied force. The method used is to compute the frequency dependent
matrix A(ω) = K + iωC − ω2M , and frequency component of the force at each fre-
quency point at the output. The matrix equation is then solved once per frequency
point. When a direct solver is used, this means that a complex factorization must be
performed once per output. This can be very time consuming, and the modalfrf
may be a better option for many situations (see section 2.1.13).

The force function must be explicitly specified in the load section, and MUST
have a “function” definition. Note that the force input provides the real part of the
force at a given frequency, i.e. it is a function of frequency, not of time. At this
time, we do not provide a way to input a complex force.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the directfrf. They are identified in the frequency sec-
tion along with an application region (see section 2.10). The range of the computed
frequency response is controlled by freq min and freq max, while freq step
controls the resolution.

2.1 SOLUTION 13

Note that, currently, directfrf is only a serial implementation. The parallel im-
plementation is scheduled for implementation in release 1.2.

We note that, in addition to the output that is sent to the .frq file, output is
also written to the exodus file during a directfrf, provided that the keywords are
specified in the output section. If nothing is specified in the output section, then
nothing is written to the exodus output files.

2.1.9 Dump

The keyword dump will cause Salinas to form matrices only and no solution will
be obtained.

2.1.10 Eigen

The eigen keyword is needed to obtain the eigenvalues and mode shapes of a system.
The parameters which can be specified for an eigensolution are shown in the table
below. By default, if nmodes is not specified, a value of 10 is used.

Parameter Argument Default
nmodes Integer 10

shift Real 0
untilfreq Real 0

The shift parameter indicates the shift desired in an eigenanalysis. The shift
value represents a shift in the eigenvalue space (i.e. ω2 space). The value to select is
problem dependent, and only relevant for singular systems (i.e. floating structures).
Please see the following discussion.

Eigenanalysis of singular systems
The eigenvalue problem is defined as,

(K − ω2M)φ = 0. (10)

Where K and M are the stiffness and mass matrices respectively, and ω and φ are
the eigen values and vectors to be determined. The problem may be solved using
a variety of methods - the Lanczos algorithm is used in Salinas. In this method, a
subspace is built by repeated solving equations of the form Ku = b. For floating
structures, or structures with mechanisms, K is singular and special approaches are
required to solve the system. The two approaches used in Salinas are described
below.

14 2 THE SALINAS INPUT FILE

Deflation. If it is possible to identify the singularity in K, then the null vectors of
K are eigenvectors (with ω = 0), and the system can be solved by insuring that
no component of the null vectors ever occurs in b. This approach is equivalent
to computing the pseudo inverse of K.

The strength of deflation is that if the eigenvectors can be determined ex-
actly, the Lanczos algorithm is unaltered and the remaining vectors can be
determined somewhat optimally. The difficulty is ensuring that we have cor-
rectly determined the eigenvectors, especially when mechanisms or multipoint
constraints exist in the model. Determination of the eigenvectors is often a
tolerance based approach that has not been as robust as we would like.

Shifting. The second method involves solution of a modified (or shifted) eigenvalue
problem.

((K − σM)− µM) φ = 0. (11)

This system has the properties that the eigenvectors, φ, are unchanged from
the original equation, and the eigenvalues, µ, are simply related to the original
values. Namely, µ = ω2 − σ.

The shifted problem benefits from the fact that K−σM can be made nonsin-
gular (except in very rare situations). This is done by choosing σ to be a large
negative value. Unfortunately, the Lanczos routine convergence is affected if
σ is chosen to be too far from zero‡. A reasonable value is σ = −ω2

elas, where
ωelas is the expected first nonzero (or elastic) eigenvalue.

On serial platforms we support only the shifted method. Because of the higher
accuracy of direct solvers, a small negative shift is normally sufficient to solve the
problem. This shift (usually -1) is computed automatically. We do not recommend
that you override the defaults.

When using the FETI solver on parallel platforms both methods are available.
If deflation is used, user input (and careful evaluation) may be required to ensure
that all global rigid body modes have been properly identified. The relevant FETI
parameters are rbm and grbm tol as described in appendix 5.3.

The shifted eigenvalue problem has proven to be more robust for many complex
problems. Set the grbm tol to a small value (e.g. 1e-20), and manually enter a
negative shift. The output should still be examined to insure that no global rigid
body modes are detected.

‡ If σ is too large a negative value, many solves will be required to determine the eigenvalues
(which consequently slows convergence). Another consequence is that often not all redundant, zero
eigenvalues may be found. They may be found by reducing the shift, tightening tolerances or by
restarting.

2.1 SOLUTION 15

If the model is not floating and has no mechanisms, the system is not singular,
and no shift should be used (as it may slow convergence).

The untilfreq keyword provides an additional method of controlling the eigen-
spectrum to be computed. If this value is provided, then the analysis will be au-
tomatically (and internally) restarted until the frequency of the highest mode is at
least the value of the untilfreq. This restart capability is somewhat crude. The are
always nmodes new modes computed on each calculation. Also, because there can
be inaccuracies associated with restarting the eigensolver,§ we restart a maximum
of 5 times.¶

Example
A SOLUTION section for an eigenanalysis with a shift of −106 , will look

like the following, if 12 modes are needed. This shift would be appropriate for a
system where the first elastic mode is approximately 150Hz.

Solution
eigen
nmodes 12
shift -1.0e6

end

2.1.11 Eigenk

The eigenk keyword is used to obtain the eigenvalues and eigenvectors of the
stiffness matrix of the model. This is equivalent to eigen if the mass matrix is
equal to the identity matrix. The same parameters apply.
IT IS CURRENTLY ONLY AVAILABLE ON SERIAL PLATFORMS.

2.1.12 Buckling

The buckling keyword is used to obtain the buckling modes and eigenvalues of a
system. The parameters which can be specified for a buckling solution are shown in
the table below. By default, if nmodes is not specified, a value of 10 is used.

§ We use the ARPACK Lanczos solver for the eigen problem. This solver maintains the
orthogonality of the eigenvectors for a single batch of modes. However, when we restart it, we must
deflate out the previously computed modes. There can thus be a slight loss of orthogonality. When
we repeatedly restart, the effect can be significant.

¶We anticipate that in the future, this keyword will be retired when better control methods are
provided.

16 2 THE SALINAS INPUT FILE

Parameter Argument Default
nmodes Integer 10

shift Real 0

The shift parameter indicates the shift desired in a buckling analysis. The shift
value represents a shift in the eigenvalue space (i.e. ω2 space). The value to select
is problem dependent.

The nmodes parameter specifies the number of requested buckling modes.
Most commonly, only the critical (lowest) buckling mode is of interest, and in that
case nmodes would be specified to be 1. However, there are cases when the first
few buckling modes are of interest, and thus this parameter can be specified in the
same way as in eigenanalysis.

Unlike eigenanalysis, buckling solution cases require a loads block. This is be-
cause buckling is always specified with respect to a particular loading configuration.
For example, for a pressure load applied on a sideset, the buckling analysis would in-
dicate the critical amplitude of the applied pressure needed to cause buckling. The
critical buckling load is computed as the product of the first (lowest) eigenvalue
times the amplitude of the applied load. Thus, for the case

LOADS
sideset 1
pressure = 10.0

END

and a lowest obtained eigenvalue of 100.0, the critical buckling pressure would
be computed as Pcr = 100.0 × 10.0 = 1000.0. This would indicate that buckling
would occur if the loading were applied as,

LOADS
sideset 1
pressure = 1000.0

END

Similar conclusions can be drawn about force loads on nodesets.
Buckling solutions cannot be computed for floating structures. If there are global

rigid body modes, the solution may not be correct. Also, for meshes with MPCs,
only parallel solution is possible. Serial buckling solutions with MPCs cause a fatal
error in the constraint transformations. This error will be eliminated in future
versions.

One additional constraint on buckling is that currently beams and shells cannot
be used in buckling solutions. We expect to eliminate this restriction in future
releases.

2.1 SOLUTION 17

Example
A SOLUTION section for buckling analysis with a shift of −106 , will look

like the following, if only 1 mode is needed (i.e. if only the critical buckling load is
of interest).

Solution
buckling
nmodes 1
shift -1.0e6

end

2.1.13 Modalfrf

Option modalfrf is used to perform a modal superposition-based frequency re-
sponse analysis. In other words, the modalfrf provides an approximate solution to
the Fourier transform of the equations of motion, i.e.(

K + iωC − ω2M
)

u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier trans-
form of the applied force.

Two options are available for the modalfrf solution: the modal displacement
method, and the modal acceleration method. In both cases the approximate solution
is found by linear modal superposition. Once the modes have been computed, there
is little cost in computation of the frequency response. The solution does suffer
from modal truncation of course, but in the case of the modal acceleration method
a static correction term partially accounts for the truncated high frequency terms.
Thus, in general that method is more accurate than the modal displacement method.
The most accurate, but also the most computationally expensive approach is the
directfrf method described in section 2.1.8.

For the modal displacement method, the relation used for modal frequency re-
sponse is given below.

uk(ω) =
∑
j

φjkφjmfm(ω)
ω2

j − ω2 + 2iγjωjω

Here uk is the Fourier component of displacement at degree of freedom k, φjk is
the eigenvector of mode i at dof k, and ωj and γj represent the eigenfrequency and
associated fractional modal damping respectively.

18 2 THE SALINAS INPUT FILE

For the modal acceleration method, the procedure for computing the modal
frequency response is more complicated. The response is split into the rigid body
contributions, and the flexible contributions. The number of global rigid body modes
must be specified in the input file. For details on the theory, we refer to section 1.8
of the theory manual.

The modal acceleration method is typically much more accurate at
finding the zeros of a function, but only slightly more accurate in
finding the poles (or peaks) of the response. The cost is an addi-
tional factor and solve. It can be used on floating structures, but the
additional factor involves only the stiffness terms (which are singu-
lar) and has no mass terms to stabilize the solution. Thus, it may
be much more difficult to perform that solve than the other solves
involved in the eigen analysis. In eigen analysis we recommend a
negative shift for floating structures to remove the singularity asso-
ciated with rigid body modes. No such approach is possible if you are
using the modal acceleration method. Thus, significant “tweaking”
of the FETI parameters may be required to accurately determine the
global rigid body modes required for success of this method.

The force function must be explicitly specified in the load section, and MUST
have a “function” definition. Note that the force input provides the real part of the
force at a given frequency, i.e. it is a function of frequency, not of time. At this
time, we do not provide a way to input the imaginary component of the force.

The following table gives the parameters needed for modalfrf section.

Parameter Argument
nmodes Integer

usemodalaccel -
nrbms Integer

The nmodes parameter controls the eigenanalysis (see section 2.1.10). The op-
tional keyword, usemodalaccel, is used to determine whether to use the modal
displacement or the modal acceleration method. If this keyword is specified, modal
acceleration is used, otherwise the modal displacement method is invoked. If use-
modalaccel is used, then the number of global rigid body modes must be specified
using nrbms.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the

2.1 SOLUTION 19

frequency section along with an application region (see section 2.10). The range
of the computed frequency spectra is controlled by freq min and freq max, while
freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.

We note that, in addition to the output that is sent to the .frq file, output is
also written to the exodus file during a modalfrf, provided that the keywords are
specified in the output section. If nothing is specified in the output section, then
nothing is written to the exodus output files.

2.1.14 Modalranvib

Option modalranvib is used to perform a modal superposition-based random
vibration analysis in the frequency domain. The solution computes the root mean
square (RMS) outputs (including the von mises stress) for a given input random
force function. The resulting power spectral density functions may also be output
for locations specified in the “frequency” section. The forcing functions (one for
each input) must be explicitly specified in the load section, and MUST have a
“matrix-function” definition (see section 2.24).

The following table gives the solution parameters needed for modalranvib
analysis.

Parameter Argument
nmodes Integer
noSVD N/A
lfcutoff Real

keepmodes Integer

The nmodes parameter controls the eigenanalysis (see section 2.1.10). All key-
words associated with eigen analysis are appropriate and available. It is recom-
mended that the eigenanalysis be performed as the first step of a multicase solution.

The optional keyword noSVD determines the method used to compute the
RMS von Mises stress output. If noSVD is specified, then the simpler method
which does not use a singular value decomposition is used. However, this method
provides no information about the statistics of the stress. Only the RMS value is
reported.

The optional keyword lfcutoff provides a low frequency cutoff for random vi-
bration processing. Usually, rigid body modes are not included in this type of
calculation. The lfcutoff provides a frequency below which the modes are ignored.
The default for this value is 0.1 Hz. Thus, by default rigid body modes are not

20 2 THE SALINAS INPUT FILE

included in random vibration analysis. A large negative value will include all the
modes.

The optional keyword keepmodes is a method of truncating modes. By default,
its value is nmodes. If a value is provided, the modes with the lowest modal
activity will be truncated until only keepmodes remain. Note that this is a much
different truncation procedure than simply truncating the higher frequency modes.
Modal truncation is important because all of the operations compute responses that
require order N2 operations. Even if keepmodes is not entered, modes with modal
activity less than 1 millionth of the highest active mode will be truncated.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the random vibration spectra. They are identified in the
frequency section along with an optional application region (see section 2.10). The
range of the computed frequency spectra is controlled by freq min and freq max,
while freq step controls the resolution. The accuracy of the computed spectra does
depend on the magnitude of freq step since it is used in the frequency domain
integration.

In random vibration, the frequency block serves two purposes. First, it is used
for the integration information for the entire model. Thus Γqq for the referenced
papers3 is integrated over frequency and used for all output. In addition, if an output
region is specified in the frequency block, output acceleration and displacement
power spectra may be computed for the given region at the required frequency
points. At this time, only “acceleration” and/or “displacement” may be specified
in the frequency block for random vibration analysis. This output is described in
more detail below.

Random vibration analysis is a little trickier than most input. A number of
blocks must be specified.

1. The solution block must have the required input for eigen analysis, and the
keyword modalranvib.

2. The RanLoads block contains a definition of the spectral loading input ma-
trix and the loadings. Note that the input, SFF is separated into frequency
and spatial components. The spatial component is specified here using load
keywords. See section 2.15. The spectral component is referred to here, but
details are provided in the matrix-function section.

3. The matrix-function section contains the spectral information on the load-
ing. It references functions for the details of the load. The real and imaginary
function identifiers for this input are specified here (2.24).

4. There must be a function definition for each referenced spectral function.
Functions of time or frequency are further described in section 2.23.

2.1 SOLUTION 21

5. There must be a frequency block that is used for integration and optionally
also for output of displacement and acceleration output. See section 2.10.

6. As an undamped system is singular, some type of Damping block informa-
tion needs to be provided. Modal damping terms are required. See section
2.28.

7. Boundary conditions are supplied in the usual way, but the standard loads
block is replaced by the input in the ranloads section. The loads block will be
quietly ignored in random vibration analysis.

8. The output and echo sections will require the keyword vrms for output of
RMS von mises stress. If the stress keyword is also found, then the natural
stresses for solid elements will be output.†

All other input should remain unchanged.

Power Spectral Densities. One output from the random vibration analysis is
a power spectral density or PSD (for displacement or acceleration). The power
spectral density is a measure of the output content over a frequency band, and
usually measured in units of cm2/Hz or some similar unit. Acceleration PSDs are
often measured in units of g2/Hz.‡

Like the input cross spectral forces, the output quantities are hermitian, with
9 independent quantities at each frequency, at each output node for each type of
output. Details of how these quantities are transformed in alternate coordinate
systems are outlined in section 1.8 of the theory manual. The matrix quantities are
diagrammed below. Quantities are output in the order Axx, Ayy, Azz, Azx, Azy,
Axy, Azxi, Azyi, Axyi. Axx Axy + iAxyi Axz + iAxzi

Axy − iAxyi Ayy Ayz + iAyzi

Axz − iAxzi Ayz − iAyzi Azz

Because the inputs are specified in terms of force cross-correlation functions, the

standard procedure for applying loads often involves application of a large concen-
trated mass at the input location. The force may then be applied to the mass and
the acceleration determined from a = f/m, where we assume that m is much larger

† The natural stresses are output in the following order: σxx, σyy, σzz, σyz, σxz, σxy. These
stresses are linear functions of the displacement.

‡ Power spectral density output is requested in the frequency block. A collection of nodes
is indicated and the displacement or acceleration keyword is entered. PSDs of displacement or
acceleration are available.

22 2 THE SALINAS INPUT FILE

than the mass of the remainder of the structure. Some confusion can arise in the
scaling of the force.

The output PSD for acceleration is defined as follows.

Gij = H†
kiSklHlj (12)

< aiaj > = H†
ki < fkfl > Hlj (13)

where Hlj is the transfer function giving aj/fl.
Consider a single input, i.e. k = l, and with fk = mkak.

Gij = H†
ki < mkakakmk > Hlj (14)

= (m2
k)Hki < akak > Hkj (15)

Thus, the acceleration PSD must be multiplied by the square of the mass to
get the force PSD. Note that Salinas uses the scale factor in the spatial force
distribution, so the scale factor in Salinas should be mk.

2.1.15 Modalshock

The modalshock solution method is used to perform a modal superposition-based
implicit transient analysis followed by computation of the shock response spectra
for the degrees of freedom in a specified node set. The following table gives the
parameters needed for modalshock.

Parameter Argument
nmodes Integer

time step Real
nsteps Integer
nskip Integer

srs damp Real

The nmodes parameter controls the modal solution described in section 2.1.10.
The time stepping parameters time step, nsteps and nskip are described in the
transient section (2.1.24).

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see section 2.10). The range
of the computed frequency spectra is controlled by freq min and freq max, while

2.1 SOLUTION 23

freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.

The optional parameter srs damp is a damping constant used for the shock
response spectra calculation. Its default value is 0.03. Damping for the model is
defined in section 2.28.

2.1.16 Modaltransient

Option modaltransient is used to perform a modal superposition-based implicit
transient analysis. The following table gives the parameters needed for modal-
transient. Damping for the model is defined in section 2.28.

Parameter Argument default
time step Real none
nsteps Integer none
nskip Integer 1
load Integer sec 2.14

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The optional pa-
rameter nskip controls how many integration steps to take between outputting
results. (It defaults to 1, which is equivalent to outputting all time steps). Time
dependent loadings are applied by referencing the appropriate load and function
sections (see 2.14 and 2.23).

Modal transient should normally be executed as a later step of a multicase
solution, where previous steps computed the eigenvalue response. However, for
compatibility with earlier formats, modaltransient can be called as a single step
solution (see section 2.1.10). In that case the following eigen value parameters are
also required. Note that in a single step solution (with no case structure), no load
keyword is required, but a loads section must exist in the file (see section 2.13).

Parameter Argument
nmodes Integer
shift Real

24 2 THE SALINAS INPUT FILE

The parallel solution of modal transient may be slower than expected
because while the eigen solution parallelizes very well, there is not
enough computation to parallelize the modal calculation. In addi-
tion, Salinas computes the displacements at all locations in the model
before subsetting to those nodes in the history file.
If output is only required at a few locations, you may want to consider
a matlab integration. You will need the eigenvalues and vectors from
the history file, and the modal generalized forces. These forces are
written to ‘ModalFv.m’.

2.1.17 NLStatics

The NLstatics keyword is required if a nonlinear static solution is needed, i.e. the
solution to the system of equations [K]{u} = {f}, where K is now a function of u.
The following table gives the parameters needed for nonlinear static analysis.

Parameter Argument Default
max newton iterations Integer 100

tolerance Real 1e-6
num newton load steps Integer 1

update tangent Integer 101

Four parameters control the conventional Newton method. Newton methods are
nonlinear solution algorithms employed to solve the residual force equations. The
residual vector, r, is the difference between the internal force vector, p, and the
external force vector, f . The strategy drives the residual to zero.

r = p− f (16)

The internal force vector is a function of the structural displacements (and possibly
velocities). External forces can also be a function of the structural displacements in
the case of follower loads such as surface pressure loads. §

The tolerance provides control over the completion of the newton iteration.
Once the change in the L2 norm of displacement decreases below tolerance, the
loop completes successfully. If the iteration count exceeds max newton iterations,
the Newton loop is considered to have failed.

The num newton load steps keyword controls the number of load steps
used to incrementally step up to the final equilibrium position. Large loads may

§Follower loads are not currently supported.

2.1 SOLUTION 25

cause the Newton algorithm to diverge. If this occurs, increase the number of load
steps applied. Displacements will be output after each load step which may be
animated similar to transient dynamics simulations.

The update tangent keyword controls how often the tangent stiffness matrix
is rebuilt during the Newton iterations. The default is set to update the tangent
stiffness matrix at the beginning of a load step only. Setting update tangent to
1 is equivalent to using a full-Newton algorithm where the tangent stiffness matrix
is rebuilt after each Newton iteration. For highly nonlinear (difficult) problems, this
option may be optimal, but for most problems the extra cost incurred in recom-
putation and refactoring of the tangent stiffness matrix should be amortized over
several solves. Note, for this option to improve Newtons method, the element types
in the model have to have the tangent stiffness method implemented.

An example SOLUTION section is shown below.

Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split load into 10 increments
update_tangent = 1 // full-newton algorithm

end

2.1.18 NLTransient

The NLtransient solution method is used to perform a direct implicit nonlinear
transient analysis. The following table gives the parameters needed for nonlinear
transient analysis.

The nonlinear transient analysis is performed according to methods described
in Hughes. A projector, corrector step is used. Note that for a linear system the
NLtransient analysis will require two solves per time step.

26 2 THE SALINAS INPUT FILE

Parameter Argument Default
time step Real -

nsteps Integer -
nskip Integer 1
flush Integer 50
rho Real Newmark beta

max newton iterations Integer 100
tolerance Real 1e-6

num newton load steps Integer 1
update tangent Integer 101

The time step control parameters, time step, nsteps, nskip and flush are
described in the transient section above, section 2.1.24. The parameter rho is
the same as described in the previous section. We note that, as in the case of
linear transient analysis, multiple time steps can be specified in nonlinear transient
analysis. The syntax for this is the same as described in the section on linear
transient analysis.

Four parameters control the conventional Newton method used to solve the resid-
ual force equations. The tolerance provides control over the completion of the
newton iteration. Once the change in the L2 norm of acceleration decreases be-
low tolerance, the loop completes successfully. If the iteration count exceeds
max newton iterations, the Newton loop is considered to have failed.

The num newton load steps controls the number of load steps used to in-
crementally step up to the final equilibrium position. Large loads may cause the
Newton algorithm to diverge. For nonlinear statics, it is recommended to increase
the number of load steps. For nonlinear transient problems, if Newtons method
diverges, either the tangent stiffness matrix has to be updated more often (see up-
date tangent) or the time-step should be decreased. The default value is 1 for
both nonlinear statics and nonlinear transient solution methods.

The update tangent controls how often the dynamic tangent stiffness matrix
is rebuilt during the Newton iterations. The default is set to update the dynamic
tangent stiffness matrix at the beginning of a load step. Setting update tangent
to 1 is equivalent to using a full-Newton algorithm where the dynamic tangent stiff-
ness matrix is rebuilt after each Newton iteration. For highly nonlinear problems,
some control of this option is recommended. Note, for this option to improve New-
tons method, the element types in the model have to have the dynamic tangent
stiffness method implemented.

2.1 SOLUTION 27

2.1.19 Receive Sierra Data

Coupling of Salinas Through The Sierra Framework

Calculations in Sierra codes such as Presto, may be transferred to Salinas. This
provides the ability to compute very nonlinear responses in an explicit code, and
follow that by an implicit, mildly nonlinear calculation in Salinas.

A solution method named Receive Sierra Data facilitates the transfer of data,
which may occur either through the sierra framework or an Exodus input file written
from the sierra application.

The method used for the transfer depends on the executable built. As currently
configured, the standard salinas executable must use the file transfer. A specially
linked executable, Prelinas, is used for the direct memory transfer of data.

Salinas was coupled with Presto in version 2.0, and additional couplings are
under development. Further information is found in the Tempo documentation. The
Receive Sierra Data solution method may be used with sierra enabled executable,
or with the sierra input file (see section 2.11.3).

The ”Receive Sierra Data” solution makes sense only in the context of a multi-
case solution. There are no parameters. An example follows.

SOLUTION
case xfer

receive_sierra_data
case eig

eigen nmodes=40 shift=-3e6
END

2.1.20 Statics

The statics keyword is required if a static solution is needed, i.e. the solution to
the system of equations [K]{u} = {f}. An example SOLUTION section is shown
below.

Solution
title ’Example of a statics solution’
statics

end

28 2 THE SALINAS INPUT FILE

2.1.21 Subdomain Eigen

The subdomain eigen keyword is used to obtain the eigenvalues and eigenvectors
of the mass and stiffness matrix of the model on a subdomain basis. This is useful
mainly for debugging distributed solutions. It is obviously decomposition dependent,
and has no physical meaning. The parameters are listed below.

Parameter Argument Default
nmodes Integer 10

shift Real 0

Many domain decomposition tools (such as FETI-DP) depend on non-singular
subdomain stiffness matrices. Running subdomain eigen on these systems reveals
the condition of the system that is to be solved. For FETI-DP, the system of interest
is the subdomain defined with the corner nodes clamped. This can be determined
using the following procedure.

1. Set the FETI parameter prt debug=3 in the FETI section (see section 2.4.2).
Running a standard analysis (i.e. statics, transient analysis or eigen) will
output the “corners.data” file. This file should normally be written properly
even if the analysis fails.

2. Copy the file to a new name, and modify it to contain only the global node
ids. This is the first column of the file.

3. Use the node list file option to clamp the corner nodes in the file (see section
2.12.3).

4. Run salinas using the subdomain eigen option. Ask for 14 modes or so. A
very small first mode indicates a singular system for which our corner selection
algorithm has not properly constrained the subdomain.

2.1.22 Tangent

The tangent solution step is only relevant as part of a multicase solution (see
paragraph 2.1.1). It forces an update of the tangent stiffness matrix. It is typically
used following a nonlinear solution step to insure that the following step begins
using the tangent stiffness matrices computed from the previous result. However, it
may also be used following a linear solution step, in which case the stiffness matrix
is recomputed based on the current value of displacement.

2.1 SOLUTION 29

The tangent stiffness matrix is assembled at the subdomain level from compu-
tations at the element level. It represents the partial derivative of the force with
respect to the displacement, i.e.

Ktangent =
∂f

∂u
(17)

In eigen analysis, the tangent stiffness matrix replaces the linear stiffness matrix
in the eigenvalue equation. This permits computation of modal response following
a preload. In nonlinear transient dynamics, the tangent stiffness matrix is used in
the Newton (or other) iteration scheme used to reduce force residuals.

2.1.23 Transhock

The transhock solution method is used to perform a direct implicit transient
analysis followed by computation of the shock response spectra for the degrees of
freedom in a specified node set (all node sets are defined in the Exodus file). The
following table gives the parameters needed for transient shock analysis.

Parameter Argument
time step Real

nsteps Integer
nskip Integer

srs damp Real

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The parameter
nskip controls how many integration steps to take between outputting results and
is optional. (It defaults to 1, which is equivalent to outputting all time steps).

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see section 2.10). The range
of the computed frequency spectra is controlled by freq min and freq max, while
freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.

The keyword srs damp is a damping constant used for the shock response
spectra calculation and is optional. It represents the damping for each single degree
of freedom oscillator in the shock spectra computation. Its default value is 0.03.

Note: Currently, the shock spectrum procedure will only compute acceleration
results. The options specified in the OUTPUT and ECHO blocks are used in the

30 2 THE SALINAS INPUT FILE

transient portion of the analysis, but are ignored for the post-processing of the tran-
sient results into shock spectra. Thus, if displacement, velocity, and/or acceleration
is selected in the OUTPUT and/or ECHO sections for a shock spectra analysis, the
results echoed to the output listing or the Exodus output file will be time history
results as requested, but the only shock spectra results will be for acceleration re-
sponse for the nodes in the specified node set. Furthermore, the calculated shock
spectra will only be echoed to the output listing; they are not output to the Exodus
results file. The shock spectra output options will be revised and improved in future
releases.

2.1.24 Transient

The transient solution method is used to perform a direct implicit transient anal-
ysis. The following table gives the parameters needed for transient analysis.†

Parameter Argument Default Purpose
time step Real 1 set the time step

nsteps Integer 100 set the number of steps
nskip Integer 1 set output frequency
flush Integer 50 control file buffering
rho Real none - see below select time integrator

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The parameter
nskip controls how many integration steps to take between outputting results and
is optional. (It defaults to 1, which is equivalent to outputting all time steps).

The parameter flush controls how often the Exodus output file buffers should
be flushed. Flushing the output insures that all the data that has written to the
file buffers is also written to the disk. This parameter also controls the frequency
of output of restart information if requested. Too frequent buffer flushes can affect
performance. However, in a transient run, data integrity on the disk can only be
assured if the buffers are flushed. A flush value of -1 will not flush the Exodus
output file buffer until the run completes. The default value is to flush the buffers
every 50 time steps.

We note that multiple time step values, along with the corresponding number
of steps, can be specified for transient analysis. This can be useful for separating

† In addition to the displacement based linear transient dynamics driver, there is an older, ac-
celeration based driver. The old driver may be selected using the old transient keyword. This
driver is not recommended unless sensitivity analysis is required. It is no longer fully maintained,
and will be removed in future releases.

2.1 SOLUTION 31

the simulation into a section of small time steps followed by a section of larger time
steps, or vice versa. The following provides an example of the use of multiple time
steps.

solution
time_step 1e-5 1e-3
nsteps 100 500
nskip 10 1

end

In this case, the user requested 100 time steps of ∆t = 1E − 5, followed by 500
time steps of ∆t = 1E−3. There is no practical limit on the number of such regions
that may be specified.

Integrator selection
Two time integrator schemes are available for direct time integration. The

method and the parameters of the integrator are selected using the keyword rho.
If this keyword is not found, the time integrator defaults to a standard Newmark-
Beta integration scheme‡. If the rho parameter is used, then the generalized alpha
method45 is used, and the value of the numerical damping is controlled by rho.

*** IMPORTANT ***
Because of limited accuracy in the solvers, the Newmark-Beta integrator is
conditionally unstable. If no damping is provided, it occasionally diverges as
time progresses. This is described in a little more detail in section 1.1 of the
theory manual. Therefore it is strongly recommended that either proportional
damping or numerical damping be used in all time integration.

The parameter rho defines the Numerical damping of the generalized alpha
method. Rho varies from 0 (maximal damping case) to 1 (minimal damping case).
If rho is not specified in the input file, the integrator defaults to the
Newmark beta method. Otherwise, the code uses the value of rho given by the
user to compute the parameters needed for the generalized alpha method. There-
fore, there is no value default for rho, as shown in the table above, since if it is not
specified the code uses the Newmark beta method instead. If rho is specified to
be greater than 1 or less than 0 an error message is printed. The three parameters

‡The Newmark-Beta integration is described in detail in most finite element text such as Cook
or Hughes.

32 2 THE SALINAS INPUT FILE

newmark beta, αf , and αm in the generalized alpha method are computed auto-
matically, given the value of rho, and thus these need not be specified by the user.
More detailed information on the implementation, and references can be found in
the description of the method in the Salinas program notes and theory manual.

In order to achieve second order accuracy and unconditional stability, we must
satisfy the following conditions.

αm < αf <=
1
2

γn =
1
2
− αm + αf

βn ≥
1
4

+
1
2
(αf − αm)

(18)

The code automatically computes these parameters such that they meet these cri-
teria. Specifically,

αf = ρ/(1 + ρ)
αm = (2ρ− 1)/(1 + ρ)

βNewmark = (1− αm + αf) · (1− αm + αf)/4
γNewmark = 1/2− αm + αf

Unlike the proportional damping parameters, there is no direct relation between
rho and an equivalent modal damping term. Numerical damping strongly affects
only the highest frequency modes (which are non-physical anyway). We recommend
a value of rho=0.9 for most analyses.

2.1.25 TSR Preload

The tsr preload solution method reads an exodus file with a previously computed
Thermal Structural Response (TSR) into Salinas for a subsequent statics or transient
dynamics analysis. This is not a fully coupled calculation. Rather, stress results are
read from the file, an equivalent internal force is computed, and that internal force
is combined with the applied force throughout the transient run. A tsr preload
may only be specified as part of a multicase solution, and it must be followed by a
transient dynamics solution (see paragraphs 2.1.1 and 2.1.24 respectively).

Note that since the stresses are actually converted into a force, and since there
is no immediate deformation in transient dynamics, the elastic stresses output by
Salinas will be very small initially, i.e. they will not contain a contribution from the

2.1 SOLUTION 33

thermal stress. However, at large times, the deformation from the internal force will
result in an elastic stress opposite to that of the thermal stress. There is currently
no method of recovering the input thermal stress as an output quantity.

The tsr preload solution method is considered to be a temporary solution to
a more complicated problem. In the future, TSR analysis will involve coupling to
other mechanics codes.

The following table gives the solution optional parameter used in tsr preload
analysis.

Parameter Type Argument
file string exodus file name

The exodus file name is a string that points to the file containing the stress results
from the TSR calculation. If no file keyword is provided, the data is expected in
the input genesis file, i.e. the geometry file specified in the FILE section (see
paragraph 2.11). Currently, for parallel execution, the data must be specified in the
genesis file, as the file name is not properly parsed for spread files.

Data in the exodus file must strictly match these criteria. There must be only
one time step in the result. That time step must have a number of different element
fields defined. These correspond to the six stresses and up to 27 different integration
points of a hex20. Other solid elements are also supported. For those elements
only the number of integration points applicable to that element are used. Unused
integration values will be ignored. If in doubt, provide the extra integration data as
missing integration points do NOT provide an error - rather they set the value to
zero. Shell and beam type elements are not supported in tsr preload.

The labels for the stresses must be as shown in the table below. In each case,
replace %d with an integer representing the integration point value (0 to 26).

Name Definition
SIGXX %d σxx, the xx component of stress
SIGYY %d σyy, the yy component of stress
SIGZZ %d σzz, the zz component of stress
SIGYZ %d σyz, the yz component of stress
SIGXZ %d σxz, the xz component of stress
SIGXY %d σxy, the xy component of stress

The linedata only keyword indicates that no system matrices should be com-
puted, but the linedata specified in the linesample file should be computed (see
section 2.11.2). This is for verification of data transfer.

The following is an example solution section for a TSR preload followed by

34 2 THE SALINAS INPUT FILE

transient dynamics.

SOLUTION
title ’Pure bending from initial stress’
case tsr

tsr_preload
load 1

case ’trn’
transient
time_step 1.e-6

nsteps 3
nskip 1

load 2
END

If executed on a file with geometry file=’example.exo’, this will produce two out-
put files, example-tsr.exo and example-trn.exo. The first of these has very little
useful information. The second will contain the displacements (or other variables)
from the transient analysis.

One additional feature that has been added for thermal structural response is
the ability to do line sampling on the original exodus file containing the element
stresses. This can be useful for debugging and verification. It allows the stresses
along lines within the structure to be examined.

As described in the section on FILES, 2.11, by including the name of the text
file containing the line sampling information, the line sampling capability is invoked.
The format of this text file is as in the following example

10
-1 -1 -1 1 1 1
0 0 -1 0 0 1
-1 0 0 1 0 0

In this case, there are 10 samples per line, as designated by the first line. The
next three lines in this file denote the coordinates of the begin and end points of
the lines that are to be sampled. Thus, in this example there are three lines that
are to be sampled, and along each line the stresses will be sampled at 10 points.
An output file, currently named linedata.m, will be generated that contains the six
components of stress at all of the points along the lines. In addition, the coordinates
of the sampling points are generated for purposes of visualizing the stresses.

2.2 Solution Options 35

2.2 Solution Options

The options described in Table 4 and in the following paragraphs are part of the
Solution section in the input file. None of the keywords are required. Note that
in multicase solutions most of these parameters may be applied separately within
the subcase (see section 2.1.1).

Table 4: Salinas Solution Options
Option Description Parameters
restart restart options none, read, write or auto
lumped Use lumped mass matrices none
solver Identify solver used “auto”
constraintmethod method of applying MPCs Lagrange

or Transform
scale toggles diagonal scaling “yes” or “no”
scalarstructuralacoustics Request structural acoustics

2.2.1 ReStart – option

Option restart controls restart file processing. Restart files permit the solution
to be saved for later use. Only a limited capability is provided, but it is intended
to meet most of the typical needs for structural dynamics. Note that the restart
files are independent of the exodus output, but the restart options may significantly
affect the exodus outputs. Application of restarts in specific sections is detailed in
the following paragraphs.

There are four values associated with this option.

none indicates that restart files will be ignored. They will be neither read, nor
written. Existing restart files will not be altered in any way. Restart=none is
the default selection if no restart options are entered in the solution block.

36 2 THE SALINAS INPUT FILE

read indicates that existing restart files will be read, but no output restart files will
be written. If the restart files do not exist, a fatal error will result.

write indicates that existing restart files will be ignored, but restart files will be
written.

auto is a combination of read and write. However, unlike read, the existence of
previous restart files is optional, i.e. there will be no error message if there are
no existing restart files. Invalid restart files will produce a warning, but not a
fatal error.

Restarts are designed to insure accuracy of the solution. However, restarts in
Salinas are not transparent in the sense that there will be small differences in two
solutions to a problem when one solution involves a restart. Restarts may also have
an expense. For example, the FETI solver uses an acceleration technique where
the values of previous solutions are used as a starting place for new solves. The
information associated with previous solutions is not stored in the file.

For transient dynamics, the state of the machine at the most recent time step is
recorded. To avoid problems with corruption of a database, the three vectors (disp,
velocity, acceleration) are recorded at each time step, but on alternate locations in
the file. If previous exodus files exist, they will be appended. Data is written at the
same interval as the exodus output.

When restarting a multicase solution, the current time is used to determine
which case the restart will begin. For example, assume the following solution block
is defined.

Solution
case one

transient
restart=auto
time_step 1e-6
nsteps 200

case two
transient
restart=auto
time_step 1e-5
nsteps 300

End

If restarting at time=1e-4, case “one” has a final time value of t f = t 0 +
200*1e-6 = 2e-4, assuming t 0=0. Since time < t f, case ‘one’ will restart

2.2 Solution Options 37

the solution. If restarting at time=2e-5, then case ‘one’ will not perform any
calculations. Case ‘two’ will then be tested to see if a restart will begin there.

Restart Solution Support. Restarts are not supported in all solutions types.
They are supported for the following.

• Eigen

• transient

• nltransient

• modaltransient

Note that none of the modal solutions except modaltransient support restart. Typ-
ically most of the computation time for these solutions is in the eigen analysis.

2.2.2 NOX

The NOX solution option allows the nonlinear solution procedure for either NL-
statics or NLtransient problems to be driven by the NOX nonlinear solver library.
Currently, Salinas can be built to run with NOX on most platforms. For such builds,
the NOX solver is not used by default but can be turned on by including the NOX
keyword as follows.

An example SOLUTION section is shown below.

Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split load into 10 increments
update_tangent = 1 // full-newton algorithm
nox // use NOX nonlinear solver

end

This option has no effect other than to invoke additional parsing of the input
deck for problems other than NLstatics and NLtransient. Simply using NOX in
this way causes the default solution procedure to be used. This corresponds to the
Newton-based approach that is used in Salinas as described in sections 2.1.17 and
2.1.18). Other solution strategies provided by the NOX library are described in
section 2.30.

38 2 THE SALINAS INPUT FILE

It should be noted that the NOX solver interface to Salinas is new and will likely
contain some bugs. If found, please e-mail a description of the bug to Russell Hooper
at rhoope@sandia.gov. At this time, there is a known bug with parallel execution
for problems involving element types of dimension two or three. This is currently
being addressed. In addition, support for other platforms is also anticipated to be
provided shortly.

2.2.3 Solver

As Salinas evolves, various solvers are available for computation of the solution.
Each solver brings with it different capabilities and sometimes unwanted features.
Currently available solvers are listed in the following.

AUTO Use the best known solver. Generally this is recommended. The matrix of
solvers versus solution types is messy, and generally the best solution will be
found by using this option. For example, there is no need to change the solver
as you move from serial to parallel solutions.

CLOP Under development by Clark Dohrmann, this is a domain decomposition
solver that is similar to FETI in many ways.

CLIP Under development by Clark Dohrmann, this is a multigrid solver.

FETI-DP This solver is the workhorse for parallel solutions. A full description of
the solver is beyond the scope of this users manual (references are on the web).
FETI-DP was developed by Charbel Farhat, Kendall Pierson and others.6 It is
very scalable, and robust. Multipoint constraints are handled using Lagrange
multipliers. The parallel solution process must be used with the solver, but
it can be reduced to a single subdomain. Care must be used to insure that
subdomains are mechanism free.

CF FETI An evolution of FETI-DP, this solver adds the capability to compute
nonlinear constraints within the solver. This is an advanced method of com-
puting gap and contact response. It is a development platform, and currently
requires a separate executable, i.e. you cannot have this solver and FETI-DP
in the same executable. The CF (Charbel Farhat) solver is templated software
that supports complex solves as well as real. Thus it can be used for direct
frf calculations. The CF solver is provided for general availability on most
platforms in release 2.0. Further details are available in section E.

Software limitations restrict building the CF solver with other FETI solvers.
Access to this solver is through a separate executable (named salinas cf).

2.2 Solution Options 39

Genfac This is the only solver currently available in serial solutions. It is a direct
solver, and is part of sparspak developed by Esmond Ng. The solver is fairly
robust, but may fail for singular systems. It occasionally has problems for very
small systems. Originally written as a Cholesky decomposition, it has been ex-
tended to compute LDLT . Constraints are eliminated using a transformation
matrix method.

Prometheus Developed by Mark Adams, this is another multigrid solver. It has
some very nice features such as augmented Lagrange constraint handling.
NOT CURRENTLY AVAILABLE.

SuperLU This package, available from NERSC, provides both serial real and com-
plex solutions. In salinas, the complex version is used for solution of serial
direct FRFs.

NOX This package, currently being developed at Sandia and available at
http://software.sandia.gov,

can be used in conjunction with any of the available linear solvers to drive the
nonlinear solution procedure for NLstatics and NLtransient problems. It may
not be specified as “solver=nox” since another linear solver must be used. See
section 2.2.2 for more details about NOX.

Generally no user input is required for specification of a solver. Indeed, up to version
1.0.5 of Salinas, only one solver was ever available at any time (i.e. we built separate
executables if another solver was desired). Usually the specification can be left off,
or specified as “auto”. If a solver is requested and unavailable, a warning will be
issued, and “auto” will be selected.

The solver may be specified as a default (above the case keywords as detailed
in section 2.1.1), or it may be individually specified within the case framework. The
default value is “auto”. In the example shown below FETI-DP will be used for the
eigen analysis, FETI-DPC for transient dynamics, and the “auto” selection for the
direct frequency response. If “input” is specified in the “echo” section (see section
2.7) then the solver information will be echoed to the results file.

SOLUTION
solver=auto
case eig
eigen nmodes=50
solver=feti-dp

case nlt
nltransient

40 2 THE SALINAS INPUT FILE

solver=clop
(other parameters)

case frf
directfrf

END

2.2.4 Lumped – option

Option lumped in the SOLUTION section causesSalinas to use a lumped mass
matrix, and not a consistent mass matrix, in the analysis.

2.2.5 Constraintmethod – option

The constraintmethod option is defined in the SOLUTION section to indicate
how multipoint constraints (MPC) will be applied. The selections for applying
MPCs are are Lagrange and Transform. These methods are explained in detail
on pp. 272-278 in Ref. 7.

The constraintmethod is currently superfluous. When using the FETI solver,
a Lagrange multiplier method is the only method available. When using the serial
solvers, the only available method is Transform.

2.2.6 Scale – option

Option scale can be set to yes or no, and controls whether diagonal scaling is
applied to the system matrices before handing them over to the linear solver. In
most cases, diagonal scaling improves the condition number of the local and global
linear systems, and thus reduces the number of iterations required for convergence.
The default behavior is not to do diagonal scaling, but when the option scale is
set to yes, the scaling is turned on. Scaling is currently only implemented for linear
and nonlinear transient dynamics. For real eigen analysis, scaling is not available.
For complex eigen analysis, scaling is done internally in Salinas.

2.2.7 scalarstructuralacoustics – option

Option scalarstructuralacoustics is used to request a structural acoustic sim-
ulation. In order to run a structural acoustic simulation, the keyword ’scalarstruc-
turalacoustics’ must appear in the SOLUTION block. This alerts the code to as-
semble the coupling matrices that couple the fluid/solid responses.

The current structural acoustic capability in Salinas has the following require-
ments and restrictions.

2.3 PARAMETERS 41

• The fluid and solid meshes must be conformal along the wet interface. This
implies a single mesh in which the nodes along the wet interface coincide and
thus have four degrees of freedom per node (three structural displacement, one
velocity potential). For parallel simulations, the structural acoustic mesh can
be decomposed in the same way as with standard structural meshes.

• Both interior and exterior problems can be simulated.

• Currently, transient and directfrf structural acoustic simulations are possible.
Complex eigenanalysis is expected to be in place at some time in the future.

2.3 PARAMETERS

This optional section provides a way to input parameters that are independent of
the solution method or solver. Only one parameter section is recognized in each
file. The parameters and their meanings are listed below.

WtMass This variable multiplies all mass and density on the input, and divides
out the results on the output. It is provided primarily for the english system
of units where the natural units of mass are actually units of force. For ex-
ample, the density of steel is 0.283lbs/in2, but “lbs” includes the units of g,
386.4 in/s2. Using a value of wtmass of 0.00259 (1/386.4), density can be
entered as 0.283, the outputs will be in pounds, but the calculations will be
performed using the correct mass units.

Salinas, like most finite element codes, does not manage the units of the anal-
ysis. The selection of a consistent set of units is left to the analyst. For
example, if the analyst uses the SI system (Kg,m,s) the units of pressure must
be Pascals. Frequencies are reported in Hz. For micromachines these units
are quite awkward. It may be better to use units of grams, millimeters and
microseconds. The analyst must insure that all material properties and loads
are converted to these units.

Some examples of useful units are shown in Table 5.

NegEigen Unconstrained structures have zero energy modes which may evaluate
to small negative numbers due to machine round off. The eigenvalues and
associated eigenfrequencies are reported as negative numbers in the results
files. However, many post processing tools (such as ensight) require non-
negative frequencies. By default, Salinas converts all negative eigenvalues to

42 2 THE SALINAS INPUT FILE

Table 5: Some useful combinations of units.

length mass time wtmass density force modulus intrnl mass
m Kg sec 1 Kg/m3 N N/m2 or Pa Kg
ft slug sec 1 slug/ft3 lbf lb/ft2 slug
ft lbm sec 1/32.2 lbm/ft3 lbf lb/ft2 slug
in lbm sec 1/386.4 lbm/in3 lbf psi lbm/g

mm µg µs 1 Kg/m3 N MN/m2 or MPa µg
mm g sec 1 g/mm3 µN N/m2 or Pa gram
mm mg sec 1/1000 g/cm3 µN N/m2 or Pa gram

near zero values in the output exodus files§. To retain the negative eigenvalues
in the output file, select parameter NegEigen.

OldBeam This option is provided for backwards compatibility with older beam
models. Early Patran models using the exodus preference numbered the at-
tributes incorrectly. The first versions of Salinas used that numbering. With
the new numbering the code had to change. Providing “oldbeam” in the pa-
rameters section selects the old numbering. The new numbering will be used
by default. At some point in the future, we plan to eliminate this option.

Table 6: Beam Attribute Ordering

Attribute 1 2 3 4 5 6 7
old numbering area orientation I1 I2 J
new numbering area I1 I2 J orientation

eig tol This is the tolerance used by ARPACK for eigensolution. If not provided,
an automatic value is used.

MaxResidual This is a tolerance used to check the rigid body mode vectors
calculated by FETI. If this residual on the rigid body mode vector is larger
than this tolerance, Salinas will abort. The default value is 1.0.

§Because many postprocessing tools are written for transient dynamics, they expect monotoni-
cally increasing, positive values for the time. Since eigenvalues are written in the time columns of
the output file, they are converted to be monotonically increasing, positive values. Note that the
numerically computed eigen frequencies are also stored as global variables in the file

2.3 PARAMETERS 43

LinkStiffness This option makes it easier for some solvers to properly compute
the response when there are many rigid links. At present, only RBARS and
RRODS (see sections 3.31 and 3.30) are affected. The option causes Salinas
to compute additional stiffness terms that would be associated with a beam (or
truss) in place of the rigid element. Since the constraint limits the deformation
to zero, there is no affect on the final solution, but the solution process can be
significantly simplified since singularities are removed from the stiffness matrix.
Specify LinkStiffness=yes or LinkStiffness=no. The default value is yes,
which means the additional stiffness terms are used.

nonlinear default In nonlinear transient dynamics or nonlinear statics, comput-
ing the fully nonlinear response of all of the elements in the mesh may be
very expensive, and in some cases it is not necessary to do so. For example,
for a simulation that only involves Joint2G elements and solid (3D) elements,
the analyst may determine that the nonlinear effects of the solid elements are
negligible. In such cases, it is advantageous to be able to control the nonlinear
response of elements on a block-by-block basis. In section 2.19 of this manual,
a block-level parameter is described that turns the nonlinearities on and off
for individual blocks. In order to avoid having to enter this parameter for each
block, the nonlinear default keyword allows the user to set the default for
all blocks. If it is set to no, then all blocks default to linear behavior (unless
specified otherwise in the BLOCK section), and if it is set to yes, then all
elements default to nonlinear behavior. Note that the block-level flags over-
ride the nonlinear default keyword. There are two possible cases for this
keyword.

nonlinear default=no All elements default to linear behavior.

nonlinear default=yes All elements default to nonlinear behavior.

TangentMethod The tangent stiffness matrix may be used in a full Newton
update in nonlinear statics or transient dynamics (see sections 2.1.17 and
2.1.18). By default, each of the elements can compute it’s own tangent stiffness
matrix. There are cases (particularly when elements are under development)
when it is better to use a tangent matrix computed from finite difference
methods. There are three possible values for this keyword.

TangentMethod=element The standard element method.

TangentMethod=difference Use finite difference.

TangentMethod=compare Use the standard method, but also compute
the matrix by the difference method. Unless “none” is specified in the

44 2 THE SALINAS INPUT FILE

ECHO section (2.7), output of the difference of every element matrix in
the model will be sent to the results file.¶

Info Salinas outputs many different details to standard out. Most of the details
are for the developers. Many such things output are number of processors,
and time taken in certain loops. Also in some cases, the contents of an array
or other such storage type are output to the screen.

In many cases, this information is not wanted. The “info” option controls the
output to standard out. There are four different levels of control. Each level
increasingly allows more output to standard out. However, currently only two
levels are supported. The other two levels of control will added in the future.

The FETI block option “prt debug” overrides “info” when it comes to FETI
output. In all other cases, “info” takes precedence. If there is no “prt debug”
command in the FETI block, then FETI output levels are also determined by
“info.”

The four levels of control are:

0. Silent – Will only output warnings and std error to the screen

1. Normal – Will only output the kind of data most analysts would use

2. Detailed – Not currently implemented. Convergence, solution addressing
issues.

3. Debug – All of the above, plus output deemed important for debugging.

Example of usage:

Parameters
info=0

End

This sets the “info” control level to Silent.

SkipMpcTouch Salinas uses a unique method of determining an active degree of
freedom set. Unlike codes like Nastran which use an auto-spc method, Sali-
nas loops through all elements and activates only degrees of freedom that are
required for elements. Multipoint constraints pose a particular problem be-
cause some codes (like Nastran) may include multipoint constraints to unused
degrees of freedom. Since these are eliminated with the autospc, this poses no

¶ In parallel solutions the results file is written only for the first processor unless the “subdo-
mains” option is specified in the echo section (2.7).

2.3 PARAMETERS 45

problem to these codes, but may confuse salinas significantly. On the other
hand, usually degrees of freedom associated with mpcs should be included in
the active set, and leaving them out can produce errors.

As a stopgap measure, we provide the parameter SkipMpcTouch. If this
parameter is set, no degrees of freedom will be activated through multipoint
constraints.

condition limit Element quality checks are important for evaluating the effec-
tiveness of the mesh. By default elements with moderately bad topology are
reported. However, sometimes there are so many of these warnings, that the
really bad elements may get missed. The condition limit parameter per-
mits user control of the reporting. Setting this parameter to a larger number
will eliminate message from marginal elements. Element checking can also be
turned off (see the elemqualchecks parameter in the output section 2.8.5).
The default value is 1.0.

Example,

Parameters
WtMass=0.001
Eig_Tol=1e-6
MAXRESIDUAL=1e-3
tangentmethod=element

End

reorder rbar This option allows RBARs to be reordered so that the number
of RBARs connected to a single node is minimized. Having a large num-
ber connected to the same node results in a highly populated matrix and a
slow computation. Therefore, reducing the number of connections can shorten
runtime.

If redundant RBARs are present (i.e. connections forming a cycle), they are
removed.

Specify reorder rbar yes or reorder rbar no. The default value is yes,
which means RBARs will be reordered.

thermal time step For thermal analysis solution procedures (i.e. statics or tran-
sient dynamics with a thermal load body load), or for any solution proce-
dure that uses temperature dependent material properties, the temperature
distribution of the structure must be read in from the exodus file. Typically,

46 2 THE SALINAS INPUT FILE

the input exodus files in this case would be the output files from a Calore anal-
ysis, and thus would contain the necessary temperature data. Since such an
analysis could contain several time steps of temperature data, the parameter
thermal time step allows the analyst to select which set of temperature
data is to be read into Salinas. The following gives an example.

PARAMETERS
thermal_time_step 10

END

In this case the user would be requesting that the temperature data corre-
sponding to the 10th time step be read into Salinas.

2.4 FETI

This optional section provides a way to input parameters specific to the Finite
Element Tearing and Interconnecting6 (FETI) solver, if used. If the FETI solver
is not used, this section is ignored. It includes the following parameters, shown in
Table 7, and options. For those options which are strings, only enough of the string
to identify the value is required. The defaults are shown in the following example.

FETI
rbm geometric
scaling no
preconditioner dirichlet
max_iter 400
solver_tol 1.0e-5
orthog 1000
rbm_tol_svd 1.0e-10
rbm_tol_mech 1.0e-8
projector standard // ignored in dp
level 1 // ignored in dp
local_solver sparse
coarse_solver sparse
grbm_tol 1e-6
prt_summary yes
prt_rbm yes
prt_debug 3
corner_dimensionality 6 // for dp only
corner_algorithm 3 // for dp only

2.4 FETI 47

Table 7: FETI Section Options

Variable Values Description
rbm Algebraic/Geometric rigid body mode method
scaling Yes/No scaling method
preconditioner LUMped/DIRichlet (both may be used)
max iter Integer maximum number iterations
solver tol Real
stag tol Real Used to detect stagnation
orthog Integer max number of orthog. vectors
rbm tol svd Real SVD tolerance in rigid body modes
rbm tol mech Real mechanical tolerance in rbm
projector Standard/Q projector
level 1 feti1 (feti2 not implemented)
corner dimensionality Integer 3 or 6 dofs/corner
corner algorithm Integer 1, 3, 5-8
corner augmentation String “none”, “subdomain”, “edge”
local solver AUto, SKyline, SParse, solver for local LU decomp

serial sparse
precondition solver Same as local solver solver for preconditioner

Only used if using Dirichlet preconditioner
coarse solver AUto, SKyline, SParse solver for coarse GT G problem

PSparse, serial skyline, (psparse is parallel sparse)
serial sparse

grbm tol Real tolerance for rigid body
detection in GT G

prt summary Yes/No print summary timer information
prt rbm Yes/No print # rbm in each subdomain
prt debug integer debug output. values 0=none, 1-3
bailout if set, the solver will continue even if the

solution is not converged at each
intermediate solve

mpc method Integer 0=Lagrange multipliers everywhere
1=Local elimination where possible

48 2 THE SALINAS INPUT FILE

corner_augmentation none // for dp only
END

2.4.1 Corner Algorithms

Corner selection is an important issue (and an ongoing research area) for FETI-
DP. Several algorithms are available. They all vary by the total number of corners
picked in the model for the coarse problem. The various algorithms are intended to
give a little more power to the advanced user. The more corners that are picked, the
quicker the solution will converge. The disadvantage being that there might not be
enough memory available for these corners, hence, Salinas might abort because of
this memory depletion. Memory statistics can be observed and with experience, the
advanced user can pick the optimal corner algorithm. The possible choices for the
various parameters are given in Table 8. All the options for each corner parameter
are listed such that the first option for each parameter picks the least amount of
corners.

Typically, corner algorithm 15 selects the minimal number of corner points. This
is a useful option to try if memory becomes an issue when running on large numbers
of processors. As noted above, smaller coarse grids increase the number of iterations
to convergence.

Corner algorithm 14 selects three corners between along the interface between
two neighboring subdomains (Γij designates the interface between subdomain i and
subdomain j). The first node is selected as the node along Γij that touches the most
subdomains. The second node is the node that maximizes the distance between any
two nodes along Γij . The third node is selected to maximize the triangular area
created by three non-colinear nodes along Γij . Corner algorithm 14 will typically
select less corner nodes than Corner algorithm 3.

Note that additional corner nodes can be placed in a special file,
extraNodes.dat. Nodes in this file will be added to the current corner se-
lection algorithm. While this method is seldom useful, it can help in cases
where an isolated element is causing catastrophic problems. The format of
extraNodes.dat is to simply put the global node numbers, one per line, in
the file.

2.4.2 Levels of Diagnostic Output

This section is under construction.

2.4 FETI 49

Table 8: Corner Options
Parameter Option Description
Algorithm 0 Picks 1 corner per interface
Algorithm 1 Most robust algorithm
Algorithm 2 Picks 2 corners per interface
Algorithm 3 Picks 3 corners per interface
Algorithm 9 Picks all interface nodes debug only
Algorithm 14 Improved version of Corner Algorithm 3
Algorithm 15 Improved version of Corner Algorithm 0
Algorithm 16 No automatic corners.

(uses extraNodes.dat).
Algorithm 17 like 3, but add corners for conms
Algorithm 99 like 14, but add will not pick

corners on mpcs
Dimensionality 3 Fixes 3 translational d.o.f. per corner
Dimensionality 6 Fixes all d.o.f. per corner
Augmentation none no additional corners are selected
Augmentation edge Additional corners on interface edges

are selected. (Stiffness weighted).
Augmentation subdomain Additional corners per subdomain

are selected.

50 2 THE SALINAS INPUT FILE

The prt debug flag takes various values from 0-4. Table 9 shows the various
values and their result. Note, for prt debug value of 3, a file named corner.data
is written. The format is as follows:

Ncorners
GlobalId LocalId SubdomainId Xpos Ypos Zpos
.
.
.
GlobalId LocalId SubdomainId Xpos Ypos Zpos

Ncorners is the total number of corners, GlobalId is the global id of the corner,
followed by the local id (LocalId), the subdomain on which the corner exists (Sub-
domainId), and the coordinates of the corner (Xpos Ypos Zpos).

Table 9: Prt Debug Options
prt debug value Result

0 No Output
1 Some Output
2 Lot of Output
3 Output + Corner.data file
4 Output + Corner.data file + matlab files

2.5 Clop

The “clop” solver may be specified in the solver section (see section 2.2.3). Parame-
ters for the Clop solver can be specified in an optional “clop” section.‖ Parameters
are listed in table 10. An example follows.

CLOP
max_iter=1000
solver_tol=1e-5
orthog=200
prt_summary=1
prt_debug=0
overlap=1

END

‖Note that the “clop” section only specifies the linear solver parameters. The “solver=clop”
specification is required in the solution section.

2.5 Clop 51

Table 10: CLOP Section Options

Variable Values Dflt Description
bailout keyword If keyword is found, we try to complete the

solve even if errors are found.
coarse solver string direct either direct or 3level
krylov method integer 0 0=PCG,

1=gmres,
2=pcg (no dot product check),
7 (for structural acoustics)

local solver integer 1 1=direct
max iter integer 400 maximum number of iterations
num rigid mode integer number of rigid body modes for mode accel-

eration approach in modal transient analysis
orthog integer 200 number of orthogonalization vectors

don’t set this above 200.
overlap integer 0 number of overlapping elements
prt summary integer 0 output flag:

0 - no summary
1 - basic pass/fail diagnostics
2 - more yet

prt debug integer 0 0 - no debug output.
1 - too much

scale option 0 no scaling, 1 use scaling in factorizations
solver tol real 1e-6 relative convergence tolerance
stag tol real 1e-6 stagnation tolerance

52 2 THE SALINAS INPUT FILE

Comments:

The “orthog” option is very memory intensive right now. Do not set this to a
value above 200 for the time being. Krylov method 7 should be used for structural
acoustics. It uses gmres, but with a different preconditioner that scales the acoustic
and structural unknowns. This assures that both variables will be solved to the
same tolerance.

2.6 CLIP

The “clip” solver may be specified in the solver section (see section 2.2.3). Param-
eters for the Clip solver can be specified in an optional “clip” section. Parameters
are identical to those for the CLOP solver of section 2.5, and are listed in table 10.

2.7 ECHO

Results, in ASCII format, from the various intermediate calculations may be out-
put to a results file, e.g. example.rslt, where the filename is generated by taking
the basename of the text input file (without the extension) and adding .rslt as an
extension. Output to the results file is selected in the Salinas input file using
the ECHO section. An example is given below, and the interpretation of these
keywords is shown in Table 11.

echo
materials
elements
jacobian
all_jacobians
timing
mesh
echo
input
nodes
mpc

end

Note that if none is used, the order of selection is important. Thus, if you add none
at the end of the list, no output will be provided in the echo file. However, if you
put none nodes then only nodal summary information will be included. Entering
nodes none mesh only outputs the mesh information (nodes information is
canceled by the none).

2.7 ECHO 53

Table 11: ECHO Section Options
Option Description
acceleration nodal accelerations (better in output section)
all jacobians jacobians for every element
block block wise mass properties (used only following mass)
displacement nodal displacements (better in output section)
echo dumb echo of input (for parse errors)
eforce element force for beams
elements element block info, i.e. what material,

element type, etc
ElemEigChecks element eigenvalue ratios
energy element strain energy and strain energy density
eorient element orientation
feti input
force applied forces (better in output section)
genergies global kinetic and strain energy sums
input summaries of many sections
jacobian block summary of jacobians
kdiag full diagonal of stiffness matrix
mass mass properties in the basic coordinate system
materials material property info, e.g. E, G
mesh summary of data from the input Exodus file
mesh error mesh discretization error metrics
NLresiduals turns on residual output per iteration

of the Newton loop for non-linear solution methods
nodes nodal summary
pressure applied pressures (better in output section)
rhs Right Hand Side vector (better in output section)
subdomains “0:3:6,10” Controls which processor will output results file
timing timing information
velocity nodal velocities (better in output section)
residuals residual vectors
resid only residual vectors at each iteration (no other output permitted)
strain element strains at centroids
stress element stresses at centroids
vonmises von mises stress only
vmrs RMS quantities (random vibration only)
mpc mpc equations
all everything
none nothing

54 2 THE SALINAS INPUT FILE

2.7.1 Mass Properties

The mass properties may only be reported in this section (i.e. at this time there is
no mass property report in the outputs section). The mass properties reports the
total mass, the center of gravity and the moments of inertia of the system. All are
reported in the basic coordinate system. Note that moments are about the origins,
not about the center of gravity. Masses are reported in a unit system consistent
with the input, whether or not the WtMass parameter has been used (see section
2.3).

An additional option of block may be used in the echo section to output the
block wise mass properties to the results file. Please note that the block wise mass
properties, though summed for all processors (if running on a parallel machine), are
only output to the result file from the first processor (processor 0). The block wise
mass properties option, called block, reports the number of blocks, the mass of
each block, and the center of gravity of each block along the x, y, and z axis. Please
note that block may only be used in the ECHO section just following the mass
option like so:

echo OR echo OR echo
materials materials materials
elements elements elements
mass=block mass block mass
nodes nodes block

end end nodes
end

The prefered method is mass=block. However any of the previous examples
will work, so long as there is whitespace between mass and block. If mass does not
directly precede block in the ECHO section, then Salinas will give the following
error:

Unrecognized "echo" option ’block".
Aborting.

2.7.2 Mpc

The keyword mpc instructs the code to write out the mpc equations to the result
file. This is a good tool for debugging purposes, as well as a check on the input
deck. An example of the output format is as follows

2.8 OUTPUTS 55

MPC
coordinate 0

25 P 1
106 P -1
// G = 0.000000
// the source is global

END

In this case, the mpc equation is constraining the acoustic pressure in nodes 25
and 106 to be equal in the global (default) coordinate system.

In parallel calculations, one results file is written per subdomain. Only data
associated with that subdomain are written to the file. Use the “subdomains” option
to specify which subdomains for which data will be written. See the comments in
the paragraphs below.

2.8 OUTPUTS

The outputs section determines which data will be written to selected output files.
All geometry based finite element results are written to an output exodus file. The
name of this file is generated by taking the base name of the input exodus geometry
file, and inserting -out before the file extension. For example, if the input exodus file
specification is example.exo, output will be written to example-out.exo. When using
a multicase solution (section 2.1.1), the case identifier is used in place of “out”.
More details are available in the FILE section (2.11).

Various non-geometry based finite element data, such as system matrices and
tables may be available in Matlab compatible format, or in Harwell-Boeing format.
These ASCII files have the .m or .hb file extensions respectively. The base file names
are derived from the type of data being output. These files are generated in the
current working directory.

In the following example, the mass and stiffness matrices will be output in Matlab
format, but the displacement variables, stresses and strains will not be output. All
the various options of the OUTPUT section are shown in Table 15. The next
sections describe each of the options and their results assuming an input file named
example.inp and a geometry file named exampleg.exo.

OUTPUTS
maa
kaa
faa

// displacement

56 2 THE SALINAS INPUT FILE

// stress
// strain
// energy
END

2.8.1 Maa

Option maa in the OUTPUTS section will output the analysis-set mass matrix
to a file named example Maa.m. If the harwellboeing option is selected, output will
also go a file named example Maa.hb.

2.8.2 Kaa

Option kaa in the OUTPUTS section will output the analysis-set stiffness matrix
to a file named example Kaa.m. If the harwellboeing option is selected, output will
also go a file named example Kaa.hb.

2.8.3 Faa

Option faa in the OUTPUTS section will output the analysis-set force vector to
a file named example Faa.m. If the harwellboeing option is selected, output will
also go a file named example Faa.hb.

2.8.4 ElemEigChecks

Option ElemEigChecks will turn on the element output of the first flexible eigen-
value, the largest eigenvalue, and the ratio of the two. The output will be stored in
the Exodus output file. The element variable names for the smallest flexible eigen-
value, largest eigenvalue, and ratio of the two are elam min, elam max, and elam rat,
respectively. Note: All 3-d and 2-d elements have this capability. The Beam2,
OBeam, Spring, Truss, Spring3, and RSpring elements are also supported.
All remaining elements will output values of zero. Finally, if elam max/elam min is
greater than 1020, then the value of elam rat will be set to 1e20.

2.8.5 Elemqualchecks

Option Elemqualchecks takes either one of three choices, on, off, or sum. The
default is sum. If this option is on or sum, then all of the elements in the input file
are checked for quality using methods developed by Knupp (Ref. 8). Knupp uses a

2.8 OUTPUTS 57

condition number to evaluate the health of an element. The following table shows
the elements currently checked and their acceptable ranges. The element quality
reporting may also be modified by the condition limit parameter specified in the
Parameters section (2.3).

Element Type Full Range Acceptable Range
Hex8 1−∞ 1− 8
Tet4 1−∞ 1− 3
Tria3 1−∞ 1− 1.3

TriaShell 1−∞ 1− 1.3
Quad4 1−∞ 1− 4
Wedge6 1−∞ 1− 5

If the option on is selected and the element’s condition numbers falls outside the
acceptable range, a warning message is printed. The value output with the warning
is normalized by the maximum number of the acceptable range for that element.
If the option sum is selected, only a summary is printed, reporting the maximum
condition number of all elements in the mesh.

In addition to these checks, solid elements are checked for negative volumes. This
can occur if the node ordering for the element establishes a “height” vector using
the right hand rule that is in the opposite direction of the actual element height. In
other words, the nodes should normally be ordered in a counter clockwise direction
on the bottom surface of the element. Some codes such as Nastran, are insensitive
to this ordering. If element checks are run, then Salinas will correct (and report)
any solid elements found to have negative volumes. Without these corrections, the
code will continue, but results that depend on these elements are suspect.

It is strongly recommended that any exodus file with negative volumes be cor-
rected.

2.8.6 Displacement

Option disp in the OUTPUTS section will output the displacements calculated
at the nodes to the output exodus file. The output file has the following nodal
variables.

58 2 THE SALINAS INPUT FILE

Variable Description
DispX X component of displacement
DispY Y component of displacement
DispZ Z component of displacement
RotX Rotation about X
RotY Rotation about Y
RotZ Rotation about Z

In addition, if the analysis involves complex variables (currently ceigen as described
in section 2.1.3), then the imaginary vectors are also included. They append “i” to
the names above, e.g. the imaginary component in the X direction is “DispXi”.

2.8.7 Velocity

Option velocity in the OUTPUTS section will output the velocities at the nodes
to the output exodus file.

2.8.8 Acceleration

Option acceleration in the OUTPUTS section will output the accelerations at
the nodes to the output exodus file.

2.8.9 Strain

Option strain in the OUTPUTS section will output the strains for all the ele-
ments to the output exodus file.

The following strains will be output for shell elements:
SStrainX1, SStrainY1, SStrainXY1 - strains in the top layer of the shell
SStrainX2, SStrainY2, SStrainXY2 - strains in the mid-plane of the shell
SStrainX3, SStrainY3, SStrainXY3 - strains in the bottom layer of the shell

Note: the top layer of the shell is determined by the ordering of the nodes of the
shell. Also, the strains are in the local element coordinate system defined by the
ordering of the nodes.

The following strains will be output for volume elements:

VStrainX, VStrainY, VStrainZ, VStrainYZ, VStrainXZ, VStrainXY

Note: These strains are in the global coordinate system, not the local coordinate
system.

For more information on stress/strain recovery, see section 4.

2.8 OUTPUTS 59

2.8.10 Stress

Option stress in the OUTPUTS section will output the stresses for all supported
elements to the output exodus file. Only shell and volume elements are supported,
i.e. there is no stress output for beams.

Shell Stresses

The following stresses will be output for shell elements.
SStressX1, SStressY1, SStressXY1, SvonMises1 - top layer of the shell
SStressX2, SStressY2, SStressXY2, SvonMises2 - mid-plane of the shell
SStressX3, SStressY3, SStressXY3, SvonMises3 - bottom layer of the shell

Note: the top layer of the shell is determined by the ordering of
the nodes of the shell, and can be output by using the EOrient
output options (see section 2.8.23). Also, the stresses are in the local
element coordinate system defined by the ordering of the nodes.

Volume Stresses

For volume elements, the stress is always output in the global coordinate system,
not the local coordinate system. The following stresses will be output for volume
elements:

Variable Value
VStressX σxx

VStressY σyy

VStressZ σzz

VStressYZ σyz

VStressXZ σxz

VStressXY σxy

VonMises von mises stress

For more information on stress/strain recovery, see section 4.

2.8.11 VonMises

Option VonMises in the OUTPUTS section will output the von Mises stress
for all the elements to the output exodus file. For volume elements, the output will
be the von Mises stress of the element. Surface elements define stresses on the top,
center and bottom layers. The output will be the maximum of these 3 values.

60 2 THE SALINAS INPUT FILE

Note that the von Mises stress is computed and output as a portion of the output
if full stress recovery is requested. This option provides a mechanism for reducing
output. Thus, if full stress output is requested, then the VonMises will provide
no additional output. In other words, specifying both VonMises and stress in
the outputs section is redundant, but does not result in an error.

2.8.12 VRMS

Option vrms will output computed root mean squared (RMS) quantities from a
random vibration analysis. These quantities are written to a separate output file.
Quantities output include the RMS displacement, acceleration and von Mises stress.
In addition for the SVD option, the D matrix terms which contribute to the von
Mises stress are output∗∗ (see section 2.1.14).

2.8.13 Energy

Option energy in the OUTPUTS section will place strain energies and strain
energy density in the output exodus file. Note that the current implementation of
strain energies requires recomputation of the element stiffness matrix, which can be
expensive.

2.8.14 GEnergies

Option GEnergies in the ECHO or OUTPUTS section will trigger computa-
tion of global energy sums for the results and output exodus file, respectively. For
the ECHO case, the computation includes the following.

strain energy The strain energy is computed from uT Ku/2 where u is the dis-
placement and K is the current estimate of the tangent stiffness matrix. Note
that this may not be complete for nonlinear solutions. Linear viscoelastic
materials have contributions that will not be included in this sum.

kinetic energy Computed as vT Mv/2. Here v is the velocity and M is the mass
matrix.

work The work is defined as,

W (t) =
∫ x(t)

x(0)
F (x)dx

∗∗For a definition of D, see Reese, Field and Segalman.3

2.8 OUTPUTS 61

where F is the force and dx is the distance traveled. This can be restated as
an integral over time.

W (t) =
∫ t

0
F (τ)v(τ)dτ

where v = dx/dt is the velocity. We approximate this at discretized time tn
as,

Wn ≈
n∑
i

Fivi∆t

Note that this is a sum over time using the simplest method possible. Because
of integration error, it may not be completely consistent with the other energies
above. For the OUTPUTS case, the total energy is written out at each time
step.

2.8.15 Mesh Error

The mesh error keyword causes mesh discretization error metrics to be computed.
These are computed as output quantities, but the overhead associated with the
metrics is not negligible. Mesh discretization quantities depend upon the solution
type, and are not available for all solutions. Output is typically available as element
quantities (usually in the mesherr field). For some mesh discretization errors, a
global quantity is also output.

Output Description
ErrExplicitLambda Relative error in λ.

ErrExplicitFreq Frequency error estimate (Hz)

We note that for eigenvalue analysis, relative errors are reported for the eigenvalue
when using the mesh error keyword. Thus, for a given eigenvalue λ, the reported
error is

ErrExplicitLambda =
λh − λ

λ
(19)

This is more convenient since the analyst does not have to divide by the eigenvalues
to see the percent error. The global variable ”ErrExplicitFreq” provides an absolute
estimate (useful in plots for example).

2.8.16 Harwellboeing

Option harwellboeing in the OUTPUTS section will output the mass and
stiffness matrices in Harwell-Boeing format to files with .hb extension.

62 2 THE SALINAS INPUT FILE

2.8.17 Mfile

Option mfile will cause Salinas to output various Mfiles like Ksrr.m, Mssr.m,
etc. These files are mainly used by the Salinas developers for code maintenance
and verification. Since many of these files can be quite large, caution should be
exercised when using this option on large models. An index of some of the files
written using this option is provided in Table 12.

2.8.18 Force

Option force in the OUTPUTS section will output the applied force vector to
the output exodus file.

2.8.19 rhs

Option rhs in the OUTPUTS section will output the Right Hand Side vector
from the calculations. For statics and dynamics, we repeatedly solve equations of
the form, Ax = rhs. The rhs vector contains the applied forces and pressures as
well as the inertial forces. Pseudo forces introduced in preload (say by TSR) are also
part of this vector. This output is useful primarily for verification and debugging
purposes.

2.8.20 EForce

Option eforce in the OUTPUTS section will output the element forces for line
elements (such as beams and springs) to the output exodus file. Each two node,
1-dimensional element will have 3 force entries for each node, for a total of 6 element
forces per element.

The element force is not a stress or a strain, and should not be used as such.
If you want beam stresses, you must mesh that portion of the structure either as
a shell or a solid. We output no stresses or strains for beams. EForce is used
primarily to help understand the behavior of nonlinear line elements such as the
Joint2G element (see section 3.25). The output is actually the direct output of our
internal force routine (which is a nonlinear routine). It can be quite confusing to
output these nonlinear forces in a linear analysis.

NOTE: The force returned is in the element (not global) coordinate
frame. No provision is made for output of moments.

2.8 OUTPUTS 63

Table 12: Data Files Written Using the Mfile Option
Filename Description
Stiff.m Unreduced stiffness matrix including all

active dofs
Kssr.m Reduced stiffness matrix
Mass.m Unreduced mass matrix
Mssr.m Reduced mass matrix
LumpedMass.m unreduced lumped mass matrix
xxx gid.m global IDs of the nodes
Fetimap a.m Map to convert from G-set to A-set

The right hand side is the equation number.
The lhs index is 7*(node index)+coordinate

Dampr.m unreduced damping matrix (real components)
Dampi.m unreduced damping matrix (imaginary components)
xxx accelNN.m G-set acceleration output of step NN
xxx accel aNN.m A-set acceleration output of step NN
xxx afNN.m G-set applied force output of step NN
xxx af aNN.m A-set applied force output of step NN
xxx dispNN.m G-set displacement output of step NN
xxx disp aNN.m A-set displacement output of step NN
xxx presNN.m G-set nodal applied pressure of step NN
xxx pres aNN.m A-set nodal applied pressure of step NN
xxx velocNN.m G-set velocity output of step NN
xxx veloc aNN.m A-set velocity output of step NN
modal amp.m modaltransient output of mode amplitude vs time
ModalFv.m modaltransient output of generalized forces

• The xxx above refers to the input file name root.

• The G-set output is 7*(number of nodes).

• The file names above are for the serial version of Salinas. In the
parallel version, an underscore and the processor number will
precede the “.m”. For example, the reduced stiffness matrix
becomes Kssr 0.m. There is no output of a globally assembled,
parallel matrix - it does not exist.

• Some solution methods will not write all files. For example,
there are no mass matrices output in the solution of statics.
Generally, matrices are output in sparse symmetric row format.

64 2 THE SALINAS INPUT FILE

2.8.21 Residuals

For most solution types, a linear solver is used to compute systems of the form Ax =
b. For direct serial solvers, these systems are typically solved to numerical precision.
However, with iterative solvers the solution is only approximate. Sometimes it is
advantageous to evaluate the performance of the solver. For example, regions with
large residuals may be candidate areas for mesh refinement, or may point to other
mesh problems.

Eigen. For eigen analysis, the residual is (K−λiM)φ. The vector is not normalized
by the norm of φ, or any other quantity. A nodal residual work is also output.
This is the product φT (K − λiM)φ summed to the nodes, i.e. on a given
node we sum the contributing degrees of freedom. Again, the value is not
normalized. Clearly with mass normalized eigenvectors (which do not have
units of length), the units of the residual work are not energy, and the term
may well be negative. The residual is output for each mode.

Transient Dynamics. For transient analysis the residual reported is Au−b, where
A is the dynamics stiffness matrix (see section 1.1 of the theory manual).
With a displacement based Newmark-Beta integrator the dynamic stiffness is
K + 2

∆tC + 4
∆tM . The residual is output at each time step.

In addition to the residual vector, the norm of the residual is output as a global
variable.

2.8.22 Resid only

It is occasionally useful to examine the residual after each solve. In the case of non-
linear transient, or of eigen analysis, there may be many solves per output. Because
of limitations in the output database format, it is very difficult (or impossible) to
intersperse the residuals from each solve with the usual solution output. However,
if all other output is turned off, we will write each residual to the output exodus
file.

2.8 OUTPUTS 65

NOTE: This is really a debugging function. As such, we do minimal
checks. It is possible to output displacement and resid only. However,
the eigenvectors will normally be properly written to the first m steps
(where m is the number of modes), and the residuals will be written
once per solve. There is no clear way to relate the residuals with the
eigenvectors.
NOTE: For eigen analysis, it is possible to output the resid only,
and the applied forces. This is the only time that forces make sense
in an eigen analysis. These are really the load vectors provided by
the iterative eigenvalue scheme (ARPACK).

2.8.23 EOrient

Option eorient in the OUTPUTS section will output the element orientation
vectors for all elements. The element orientation is a design quantity that normally
does not change significantly through the course of an analysis. This output is
provided to help in model construction and debugging.

The orientation vectors are output as nine variables that collectively make up
the three vectors required for element orientation. The output variables and the
associated meanings for various elements are shown in tables 13 and 14 respectively.

Table 13: Element Orientation Outputs
Name Description
EOrient1-X
EOrient1-Y first orientation vector
EOrient1-Z
EOrient2-X
EOrient2-Y second orientation vector
EOrient2-Z
EOrient3-X
EOrient3-Y third orientation vector
EOrient3-Z

2.8.24 Pressure

Option pressure in the OUTPUTS section will output the applied pressure to
the output exodus file as an element variable. Note that there is no output for
different sides of an element. Thus, if there is pressure applied to more than one

66 2 THE SALINAS INPUT FILE

Table 14: Element Orientation Interpretation
Element EOrient1 EOrient2 EOrient3
Beam2 axial first bending (I1) 2nd bending (I2)
Shells Element X Element Y Normal
Solids Element X Element Y Element Z
HexShell Element X Element Y thickness
ConM NULL NULL NULL

face of an element, the output will represent only one of these pressures. Also note
that the output provides a single pressure variable per element, and is not directly
related to a particular element face. For most applications this provides a useful
tool for checking input loads.

2.8.25 APressure

Option apressure in the OUTPUTS section will output the acoustic pressure
to the output exodus file as a nodal variable. For purely acoustic elements, this
will result in one degree of freedom per node, but for acoustic elements on the wet
interface, this will result in four degrees of freedom per node in the output exodus
file.

2.8.26 APartVel

Option apartvel in the OUTPUTS section will output the acoustic particle
velocity to the output exodus file as an element variable. This is simply the velocity
of the fluid particles. It is computed in Salinas as the gradient of the velocity
potential. For purely acoustic elements, this will result in three degrees of freedom
per element.

2.8.27 KDiag

Option kdiag in the OUTPUTS section will output the maximum and min-
imum values of the diagonal of the stiffness matrix as nodal variables KDiagMax
and KDiagMin. These are the max and min of the 7 variables associated with the
3 translational, 3 rotational and 1 acoustic degree of freedom on each node. These
values are primarily useful for diagnostics purposes, where they may help identify
regions of a model that have extremely high stiffnesses. All 7 terms may be seen by
outputting kdiag in the ECHO section.

2.8 OUTPUTS 67

Figure 1: Example KDIAG output.

Figure 1 illustrates the use of this option. Note how the center sections of the
model are highlighted by their stiffness terms. This tool is especially important
for analyzing some collections of beams. Since beam stiffnesses are proportional to
1/L3, it is common to accidentally generate beams of extremely high stiffness, which
can ruin the numerical solution.

2.8.28 Warninglevel

We have partially implemented some control over the output of warning messages.
This is not implemented in general, but may be useful for some cases. The keyword
warninglevel may be followed by either an integer, or a string.

level descriptor comment
0 none minimal warning output
1 severe only severe warnings output
2 bad severe and bad warnings output
4 information all warnings (default)

68 2 THE SALINAS INPUT FILE

Table 15: OUTPUT Section Options
Option Description
maa mass matrix in the a-set
kaa stiffness matrix in the a-set
faa force vector in the a-set
elemqualchecks on ‖ off default is on
ElemEigChecks outputs first flexible eigenvalue,

largest eigenvalue, and the ratio
of the two for each element

disp displacements at nodes
velocity velocity at nodes
acceleration acceleration at nodes
strain strain of element
stress stress of element
vonmises vonmises stress on element
vrms RMS quantities (random vibration only)
energy element strain energy and strain energy density
genergies global sum of energies
mesh error mesh discretization errors
harwellboeing mass and stiffness matrices in Harwell-Boeing format
mfile Outputs various Mfiles (mainly for developers)
locations Outputs nodal coordinates and DOF to node map
force Outputs the applied force
rhs Outputs RHS of system of equations to be solved
pressure Outputs pressure load vector
eforce Outputs element forces for beams
eorient Outputs element orientation vectors
warninglevel Contol of warning messages

2.9 HISTORY 69

2.9 HISTORY

All the results from the “OUTPUT” section can be output to a limited portion
of the model using a history file. Only those outputs described in Table 15 are
supported. Note that if the output is also specified in the OUTPUT section, there
is little need to write the data in the history file. The following output section
options are ignored in the history section because all history file output will be in
the exodus format.

• mfile

• harwellboeing

• kaa, maa, faa

• vrms

In addition to the output selection options, the history file section contains infor-
mation about the regions of output. The default is NO output selection. Selection
may be for node sets, side sets, a node list file (see section 2.12.3), or element blocks.
If side sets are selected,the side set selection is for the nodes associated with that
side set, not for the elements themselves. All nodal variables selected in the history
file will be output for all selected nodes. Selecting an element block automatically
selects the associated nodes in that block. The format for the selection is the same
as that of the subdomains selection in the ECHO (section 2.7). For example,

HISTORY
nodeset ’1:10,17’
sideset ’3:88’
nodeset ’8,15’ coordinate 4
block 5,6,3
stress
disp

END

Any number of nodeset selections can be specified in the history section. Nodeset
specifications may be followed by an optional coordinate entry. If a coordinate
is specified, all nodal results for the nodes in the nodeset are transformed to the
specified coordinate system before output to the file. If a particular node is identified
in more than one specification, the last specification is used for the output. The
coordinate ID of nodes in the history file may be printed out in the echo file by
specifying nodes in the echo section of the input. The coordinate ID will also be

70 2 THE SALINAS INPUT FILE

written to the history file (as a nodal variable CID) provided any nonzero coordinate
frames have been specified.

Only one block and one sideset specification is permitted in the history sec-
tion. Output coordinate frames may only be specified on nodesets.

Unlike subdomains, node set and side set IDs need not be contiguous in the
exodus file. The selection criteria may identify nonexistent sets. These will be
silently ignored. In the above example, if the input exodus file contains no node set
with ID=10, it will not be treated as an error. Node set and side set IDs in the
history file will be consistent with the corresponding exodus input file.

Only one history file will be written per analysis. The name of the history file is
derived from the name of the exodus output file, except that the extension is “.h”.

While the history file provides a convenient means for transforming coordinates,
its applicability may be somewhat limited when output in many coordinate frames is
desired. In particular, only a single history file is written in each analysis, and only
one coordinate frame may be output per node. See the coordinate section (2.22)
for information on obtaining the transformation matrices from each coordinate frame
directly.

2.10 FREQUENCY

The frequency section provides information for data output from the modalFRF,
directFRF, shock, modalshock, and random vibrations solution methods. One fre-
quency file is written per analysis. The name of the frequency file is derived from
the name of the exodus output file, except that the extension is “.frq”. The section
format follows that of the history section, except that currently the only outputs are
nodal variables. Elements will be collected and placed in the geometry definition
of the file, but only nodal variables are output at each frequency value. Solution
methods that do not write frequency domain output silently ignore the Frequency
section.

The frequency section also includes the definitions of the frequency range and
step. (In the beta release notes, these were included in the solution section).

A frequency section (with some output selection region) must be selected for any
solution method requiring frequency output. To fail to do so is an error, since the
solution would be computed and no output provided.

FREQUENCY
nodeset ’1:10,17’
sideset ’3:88’
block 5,6,3

2.11 FILE 71

disp
acceleration
freq_min=10 // starting frequency in HZ
freq_step=10 // frequency increment
freq_max=2000 // stop freq. This example has 201 frequency points.

END

The controls in the frequency section also affect data written to the results
(or echo) file. In particular, the echo file contains data only for those nodes in
the selection region of the frequency section. Selection of a specific output (such
as displacement or acceleration) is independent. For example, you may echo only
displacements, but write displacements and accelerations to the exodus frequency
output file.

The seacas translator exo2mat may be used to translate the output into matlab
format for further manipulation and plotting.

2.11 FILE

Disk files names are specified in the FILE section. The parameters for the FILE
section are,

Option Description
geometry file Indicates which Exodus file to use

numraid Indicates how many raids are
available (for parallel execution)

linesample file Indicates which linesample (text) file to use
sierra input file optional file name for transfer

of data from a sierra application

2.11.1 geometry file

The geometry file is used for input of the mesh geometry including the nodes, ele-
ments, connectivity and attributes. It is typically a binary exodus file.

In an MP environment, the file name is determined by the number of raid con-
trollers and the processor number. The actual file name is computed by this com-
mand:

sprintf(filename,fmt, (my proc id%numraid)+1, my proc id);

72 2 THE SALINAS INPUT FILE

where fmt is the string specified for the geometry file. The number of raid devices is
defined using the keyword numraid. For example, on a single processor, a FILE
section may look like this.

FILE
geometry_file ’exampleg.exo’

END

On multiple processors this might look like:

FILE
geometry_file ’/pfs_grande/tmp_%.1d/junk/datafile.par.16.%.2d’
numraid 2

END

This will result in opening these files:

/pfs_grande/tmp_1/junk/datafile.par.16.00
/pfs_grande/tmp_2/junk/datafile.par.16.01
/pfs_grande/tmp_1/junk/datafile.par.16.02
/pfs_grande/tmp_2/junk/datafile.par.16.03
/pfs_grande/tmp_1/junk/datafile.par.16.04
...
/pfs_grande/tmp_2/junk/datafile.par.16.15

Note that if the file name is not included in quotes, it will be converted to lower
case. Appendix C shows the steps involved in the parallel execution of Salinas.

2.11.2 Linesample

Line sampling provides a means of evaluating fields or internal variables at sampling
points within a structure. These sampling points are defined on a series of lines.

The primary application is verification of stress fields read into Salinas from TSR
(see section 2.1.25).

The format of the linesample file is as follows:

• line 1: an integer listing the number of samples per line. Each line will have
this number of equally spaced samples. each subsequent line contains 6 real
numbers. These represent the coordinates of the beginning and endpoints of
the sampling line.

2.11 FILE 73

• Each subsequent line has the 6 real numbers. These represent the coordinates
of the beginning and endpoints of the sampling line. Any number of these
lines may be provided.

• Terminate with EOF.

The output will be written to a matlab m-file with the name provided by
the argument to linesample. One file is written per analysis (results are joined
analogous to history file output).

2.11.3 sierra input file

The sierra input file may be used as a restart following a sierra calculation (using
Presto for example). This is an alternative to directly transferring the same data
using the sierra transfer services. The sierra input file has the same format and
usage as geometry file, and can be used to transfer data in parallel or serial. See
also section 2.1.19.

2.11.4 Additional Comments About Output

A text log or results file can be written for the run. Details of the contents of the
results file are controlled in the ECHO section (see section 2.7). The results file
name is determined by the name of the input file, and will be in the same directory
as the input text file, regardless of whether Salinas is being executed in serial
or parallel. However, if executing in parallel, using the “subdomains” option in the
ECHO section allows control of the number of results files. For example, if running
on 100 processors, up to 100 result files may be output. Using subdomains “0:2”
will only output three files, from subdomains 0, 1, and 2. The default is to output a
results file only for processor zero. The results file name uses the base name of the
input, with an extension of “.rslt”. In a parallel computation, the results file names
use the base name of the input file, followed by an underscore and the processor
number, then followed by the “.rslt” extension.

For calculations in which geometry based output requests are included (see section
2.8), an output Exodus file will be created. The Exodus file is a binary file
containing the original geometry plus any any requested output variables. The
output Exodus file name is determined from the geometry file name. The base
name of the output is taken from the geometry file by inserting the text “-out”
just before the file name extension. The output Exodus file will be written to the
same directory where the geometry file is stored. If executing Salinas on a parallel
machine, the Exodus output files should be written to the raid disks for reasonable
performance.

74 2 THE SALINAS INPUT FILE

2.12 BOUNDARY

Boundary conditions are specified within the Boundary section. Node sets, side
sets or nodelists may be used to specify boundary conditions. By default, they are
specified in the basic coordinate system, but an alternate system may be specified
using the “coordinate” keyword (see section 2.22). The current implementation is
very inefficient if any but the basic system is used (they are treated as MPCs). The
following example illustrates the method.

BOUNDARY
nodeset 1

x = 0.1 // constrain x=0.1 for all nodes in set
y = 0 // constrain y=0 throughout nodeset 1
RotZ = 0 // constrain the rotational dof about Z

nodeset 2
fixed // constrain all structural dofs in nodeset 2

nodeset 3
accelx = 0.3 // constrain the x component of acceleration,
function=1 // in nodeset 3, with the time-dependence
disp0 = 0.0 // given by function 1, and initial conditions
vel0 = 0.1 // given by disp0, vel0

sideset 3 // acoustic sideset
pdot = 1.0 // constrain the time derivative of acoustic pressure
function = 2 // in sideset 3, with the time-dependence
p0=1.0 // given by function 2, and initial condition p0

sideset=4
coordinate 7 // apply in coordinate system 7
x=0 // constrain only the X direction in frame 7

node_list_file=’clamped.nodes’
fixed

END

The descriptors for the displacement boundary conditions are, X, Y, Z, RotX,
RotY, RotZ, P, and fixed. An optional equals sign separates each descriptor
from the prescribed value. The value fixed implies a prescribed value of zero for
all degrees of freedom.

2.12.1 Prescribed Displacements

In linear statics, one may prescribe a nonzero displacement by entering a value
following the coordinate direction. In the example above, the displacement for
nodeset 1 is set to 0.1 in the X direction.

2.12 BOUNDARY 75

For linear statics, there must be no function entry following the entry. Prescibed
displacements have the same limitations as prescribed accelerations described in the
next section.

The load in this case is introduced by the prescribed displacement. However,
the loads section must exist (for error checking purposes) even if it is empty.

2.12.2 Prescribed Accelerations

In transient dynamics, the acceleration on a portion of the model may be prescribed
as a function of time. The descriptors for prescribed accelerations are, accelX, ac-
celY, accelZ, RotaccelX, RotaccelY, RotaccelZ, Pdot. A function must
be used to apply the time-dependent boundary accelerations. Optional initial dis-
placement and velocity can also be specified; if not, they default to 0. In the example
above, the x acceleration of nodeset 3 will be prescribed as 0.3× f(t), where f(t) is
defined in function 1. The initial displacement is given as 0, and the initial velocity
is 0.1. Currently, only accelerations can be prescribed. However, this does not pre-
clude problems with prescribed velocities and displacements, since these cases can
be converted to a prescribed acceleration by differentiation. Note that if no function
is listed, an error message will be generated.

We note that in the case of an acoustic sideset or nodeset, the prescribed value
is the first time derivative of acoustic pressure, denoted above as Pdot. This
is because, internally, Salinas solves for the velocity potential, and the first time
derivative of the velocity potential is the acoustic pressure. Thus, by specifying the
first time derivative of pressure, one is actually prescribing the acceleration of the
velocity potential.

An additional point to consider when applying prescribed accelerations is that
the initial velocity and displacement (denoted as disp0 and vel0), are also nec-
essary to completely define the boundary condition. These values account for the
constants of integration obtained when integrating the prescribed acceleration to
obtain the corresponding velocity and displacement on the sideset or nodeset. In
the case of acoustics, only one initial condition is needed (p0 which specifies the
initial acoustic pressure), since only the first time derivative of acoustic pressure is
specified. We note that disp0, vel0, and p0 all default to 0 if not specified.

There are some limitations with the prescribed acceleration capability, which
we list now. First, prescribed accelerations are not currently set up to work with
multicase solutions. Also, they only work in the standard (Cartesian) coordinate
system. Prescribed accelerations can be used in meshes that have nonlinear or
viscoelastic elements, as long as the prescribed accelerations are not applied directly
to the nonlinear or viscoelastic elements. Lastly, we note that the nodes involved in
prescribed accelerations cannot coincide with nodes that are involved with mpcs.

76 2 THE SALINAS INPUT FILE

Finally, we note that when prescribed accelerations are used, they induce a load
on the structure. Thus, in many cases the loads section serves no purpose, unless
an additional external load is applied. In these cases, however, we note that that
an empty loads block is still needed in the input file. An error message will be
generated if the input file has no loads section.

2.12.3 Node List File

To make it a little easier to apply boundary conditions, a node list file option is
provided. In this option, an additional text file is provided which contains a list
of global node ids separated by white space. No comments, or other characters
are allowed in the file, as shown above. The remainder of the boundary condition
specifications are unchanged.

There are several limitations place on collections of nodes specified in this man-
ner.

1. This is a rather inefficient method of supplying the nodes. It is recommended
that nodesets or sidesets be employed when practical.

2. No node distribution factors may be provided.

3. Only one node list file can be provided per section, e.g. there may be only one
such file in a boundary section.

4. The output exodus file will have no record of this list.

5. The global node numbers are the unmapped exodus indices. This means that
the numbers go from 1 to N , where N is the maximum number of nodes in the
model. This definition is the only one which allows the same node numbering
to be used in both a serial and parallel file.

6. There is NO requirement that the nodes be sorted in the list, but repeating a
node in the list can have undefined results, i.e. don’t do it.

2.13 LOADS

Loading conditions are specified within the loads section. The following example
illustrates the method.

LOADS
nodeset 3

force = 1.0 0. 0.
scale = 1000.

2.13 LOADS 77

function = 2
nodeset 5

force = 0. -1 0
body

gravity
0.0 1.0 0
scale -32.2

body
thermal_load
function = 1

sideset 7
pressure 15.0

sideset 12
traction = 100.0 20.0 0.0

sideset 13
acoustic_load 1.0
function = 1

node_list_file=’force.nodes’
force=1.0 0 0.
scale = 100.
function=2

END

Loads may be applied to node sets, side sets, node lists (see section 2.12.3) or the
entire body (in the case of inertial loads). Loads are applied in the global coordinate
system using nodesets. Pressure loads may be applied using side sets. The pressure
is always normal to the surface. All loads applications are additive.

The syntax followed is to first define the region over which the load is to be applied
(either nodeset, sideset, node list file or body). Each such region defines a
load set. For each such definition, one (and only one) load type may be specified.
However, any region definition (except node list file) may be repeated so that
forces and moments may be applied using the same node set. The load types are,

78 2 THE SALINAS INPUT FILE

Option Parameters
force val1 val2 val3
moment val1 val2 val3
gravity val1 val2 val3
pressure val1
acoustic load val1
traction val1 val2 val3
thermal load none

Following the definition of the load type, a vector (or scalar in the case of pressure
loads) must be specified, except in the case of a thermal load, where no vector or
scalar multiplier is needed. The total force is the product of the load vector, the
scale factor, and the nodeset distribution factor found in the exodus file. Note that
in some cases the nodeset distribution factor may be zero. In that case, the total
applied force will also be zero. The pressure and acoustic load loadings may
only be applied to side sets. The total pressure is the product of the scale factor,
pressure (scalar) and sideset distribution factors. If the pressure loading in NOT
normal to the sideset, the traction capability should be used. NOTE: Pressure
will act on a surface in a compressive sense, while a traction can be specified as any
vector which will act on the sideset specified in the direction given by the triple
values specified after traction. Also, traction loads are applied on the faces of the
shell elements in a piecewise manner, i.e., the traction load acting on a face of the
element is assumed constant. If the distribution factors on the nodes of the element
vary, the average of the load (element per element) is assumed.

The acoustic load loading may only be applied to acoustic elements. It spec-
ifies the fluid velocity in the normal direction only, since for inviscid fluids the
tangential velocity components cannot be ’forced’. Note that this is the counterpart
to the pressure load for structures, in the sense that it is a Neumann boundary
condition.

Variation of the load over space is accomplished using node set or side set distri-
bution factors. If these are provided in the Exodus file, the load set is spatially
multiplied by these factors. The total loading is the sum of the loads for each load
set summed over all the load set regions.

Finally, we note that when prescribed accelerations are used, they induce a load
on the structure. Thus, in many cases the loads section serves no purpose, unless
an additional external load is applied. In these cases, however, we note that that
an empty loads block is still needed in the input file. An error message will be
generated if the input file has no loads section.

2.13 LOADS 79

2.13.1 Thermal Loads

The thermal load option is used in conjunction with a spatial temperature spec-
ification for the structure. The temperature distribution can either be specified via
the input exodus file, or on a block-by-block basis, as described below. Based on
the temperature distribution, a thermal load is computed and then applied to the
structure.

If the solution method is selected to be statics, the thermal load option will
provide the thermal load necessary to solve the thermal expansion problem. If
the solution method is transient dynamics, the same thermal load will be applied
as in the statics case, but modulated by the function that is specified below the
thermal load keyword. This corresponds to a thermal shock analysis. Thus, for
a transient dynamics problem that includes damping, and with a function that is
equal to 1.0 for all time, the transient analysis would eventually converge to the
same solution as obtained in the statics analysis, which would be the solution from
a classical thermal expansion analysis.

The temperature field can either be read from an exodus file, which would typ-
ically be the result of a Calore analysis, or it can be specified on a block-by-block
basis in the input deck. For temperature fields that change from element to element,
the temperatures must be read in from the Calore output file. For more uniform
temperature distributions, it is more efficient to specify them block-by-block in the
input deck.

Note that when using thermal loads, the temperature data is expected to either
be in the mesh (exodus) files, or specified using the input deck (i.e. block-by-block).
The format of the exodus file output is the same as that generated by Calore, as
described below.

If temperatures are specified using the input deck, then each block must be given
its own temperature. In the example below, there are 2 blocks, and each is given a
different temperature.

BLOCK 1
material 1
T_current 100

END
BLOCK 2

material 2
T_current 200

END

Note that the default for Tcurrent is 0.

80 2 THE SALINAS INPUT FILE

When temperatures are read in from a Calore output file, the material properties
can be specified as temperature-dependent. This implies that each element will have
different material properties. More details are given in the section on temperature-
dependent material properties.

For thermal statics or thermal transient analysis, each material block must be
given two additional parameters, the reference temperature, Tref , and the coeffi-
cient of thermal expansion, alphat. These parameters are defined via the thermal
strain, which is given by

εthermal = alphat (Tcurrent − Tref) (20)

An example is the following.

MATERIAL 1
E 10e6
nu 0.3
tref 300.0
alphat .001
density 0.1

END

The defaults for tref and alphat are both 0.0. This implies that if they are not
specified, then the material will not contribute to the thermal analysis (see equation
20).

Shell and beam type elements are not supported in thermal analysis. If used
in conjunction with a thermal load, their contributions to the thermal expansion
analysis will be ignored. This shortcoming is expected to be corrected in a future
release.

The labels for the temperatures must be as shown in the table below. This is
the output format used by Calore.

Name Definition
TEMP the nodal temperature

The thermal load load case can be used in a multicase solution method. In
that case, the stresses and internal forces from the thermal analysis are used as
initial conditions for the next case. For example, for a fixed-fixed cantilever beam
that is subjected to a uniform temperature increase, the beam will undergo a stretch
due to the thermal static analysis, and will have residual stresses. If this beam
were then subjected to an eigen analysis in a subsequent case, the modes would be
modified due to the geometric stress stiffening. Conversely, for a fixed-free beam,
there would be no residual stresses and thus no effect on subsequent cases. Note that

2.13 LOADS 81

the displacements from thermal analysis are not carried over to subsequent cases.
Thus, to get the total displacement from a thermal analysis followed by transient,
one would need to add the displacement results from the two cases separately.

When reading in temperature data for use in a thermal analysis, there is one addi-
tional input needed in the PARAMETERS block, the keyword thermal time step.
The following gives an example.

PARAMETERS
thermal_time_step 10

END

The Calore output files can contain multiple time steps of data. The user can
select which time step is to be used for defining temperature data in Salinas, using
the keyword thermal time step. In this case the tenth time step will be read in
from the Calore output files. The default value for keyword thermal time step
is 1.

The following is an example of some of the input for a thermal statics analysis.

SOLUTION
statics

END

PARAMETERS
thermal_time_step 10

END

LOADS
body
thermal_load

END

2.13.2 Consistent Loads

The loads for all of the 3-D and 2-D elements are calculated in a consistent fashion
when a pressure load is applied. For more details on the implementation, see the

82 2 THE SALINAS INPUT FILE

programmer’s notes. It is very important that consistent loading be used. This is
especially true for shell elements where the consistent loading is required to properly
apply rotations.

2.13.3 Time Varying Loads

Additional options provide the capability of varying the load over time. The loads
options include,

• scale with one parameter provides a scale factor to be applied to the entire
load set. Only one scale may be provided per load set.

• function. A time varying function may be applied by specifying a function
ID. Only one function may be applied per load set. The function is defined
in the function section (see section 2.23 on page 106). The loads applied at
time t for a particular load set will be the sum of the force or moment vectors
summed over the nodes of the region and multiplied by the scale value and
the value of the time function at time t.

NOTE: If a function is defined for a particular load, then it is as-
sumed to be a transient load. If there is no function defined then it is
assumed to be a static load. The solution procedure chosen will only
use the loads that are applicable, i.e., a static solution will only use
static loads and a transient solution will only use transient loads.

2.13.4 Frequency Dependent Loads

Frequency dependent loads may be applied in frequency response analysis. The
real part of these loads is applied exactly as above with the understanding that the
functions referenced now apply to frequency not time. Frequency dependent loads
may include an imaginary component. This is done by prefixing the load types listed
above by the letter “i”. Thus the imaginary part of the load uses these load types.

For Complex Analysis
Option Parameters
iforce val1 val2 val3
imoment val1 val2 val3
igravity val1 val2 val3
ipressure val1
itraction val1 val2 val3

A function must be associated with each such load. An example follows.

2.14 Load 83

LOADS // example for FRF analysis
nodeset 1

force=1 0 0 // the real part of the load
function=11

nodeset 2
iforce=1 0 0 // the imaginary part of the load
scale .707
function=12

END

2.14 Load

Loading conditions for all multicase solutions are specified within the load section.
See paragraph 2.1.1 for information on specifications for multicase solutions. The
load section is identical to the loads section described in the previous paragraph
(2.13), except the the section begins with the load, and a load step identifier is
required. The following example illustrates the required input.

LOAD=57
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
force = 0. -1 0

END

Unlike the loads section, there may be multiple load sections in the file, with
each entry corresponding to an applicable step in the solution.

2.15 RanLoads

The RanLoads section is used to provide input information for spectral input
to a random vibration analysis. Note that this input will contain both a spatial
and temporal component. The RanLoads section contains the following required
keywords.

Parameter Argument Description
matrix Integer matrix-function identifier
load Integer row/column identifier

84 2 THE SALINAS INPUT FILE

The matrix keyword identifies the appropriate matrix-function (see section
2.24). The matrix-function determines the dimensionality of the input (using the
dimension keyword). It also determines the spectral characteristics of the load.

The spatial characteristics are determined in load sections within the Ran-
Loads definition. There must be exactly as many load sections as the dimen-
sionality of input. For example, if the SFF matrix is a 3x3, then there should be
3 separate load sections. Each load section within the RanLoads block must be
followed by an integer indicating to which row/column it corresponds. The details
of each load section are identical to the over all loads section (see 2.13) except
that no time/frequency function is allowed. Note that only one load is required per
row of the SFF matrix, but each entry of the matrix may have a spectral definition
(identified by a real and/or imaginary function).

The following example illustrates the definition of a single input specification.
The loading is scaled so that a 1000 lb mass located on the input point (in nodeset
12 here) is scaled to produce a unit g2/Hz loading.

RANLOADS
matrix=1
load=1
nodeset 12

force=0 1 0
scale 1.00e3 // needed to convert to g
// loads input in lbs. The PSD is in g^2/Hz.
// F = accel * mass
// = accel * (scale_factor)
// = accel * ((1000*.00259)*384.6)

END

Scaling the input force for a random vibration analysis can be confusing. This
is especially true since enforced acceleration cannot be used to apply the force.
The example above applies to english units where a wtmass parameter has been
applied. For SI units or other systems where wtmass=1, the force would need to be
multiplied by g to apply the input as acceleration in g’s.

The input acceleration may be examined by evaluating the output PSD at the
input degree of freedom. This is done by putting the applied load set into the
frequency section (2.10), and adding the acceleration keyword. The output
is in the native units of analysis. For the example above, the output will be in
(in · lbm/s2)2/Hz, and must be divided by (386.4)2 to convert to g2/Hz.

2.16 Contact Data 85

2.16 Contact Data

Limited Node-to-Node contact is available in release 2.0 (February 2005).
While some tied surfaces are in place (see section 2.17), general contact
is unavailable in the current release. The following documentation is
retained in the user’s manual to facilitate feedback from our user com-
munity, but much of the functionality is still pending.

Contact surfaces provide the ability to model structures that may be in contact part
of time. Examples include a tire rolling on the road, rattling in a joint and structures
under impact. Note that a tied surface capability is available for the special case
where the surfaces will always be in contact (see section 2.17). Contact surfaces are
inherently nonlinear. The simplest of such structures are characterized by friction-
less contact, i.e. a restorative force is provided only in the normal direction, and
slippage occurs tangent to the normal. This is the only type of contact currently
supported in Salinas, though frictional and sticking contact are under development.

Contact is specified as shown in the example below.

CONTACT DATA
Surface 33,17
Friction Static = 0.0
Search Tolerance = 1e-8
Interaction=node-to-node

END

The example above defines a region of contact between sidesets 33 and 17. While
contact is defined here between sidesets, it is currently limited to node-to-node
contact. The coefficient of static friction is defined to be zero (the default). The
search tolerance sets the radius for search for the nodes on the surface. The relevant
parameters for contact are shown in Table 16.

The only interaction method currently supported is “node-to-node” which is
specified with the “interaction” keyword. Also, the only supported friction model is
none, specified by a coefficient of static friction of zero. Contact is enforced within
the solver, and is currently supported only when using the FETI-CF solver (Ap-
pendix E). Enforcement does not truly require distinguishing between the master
and slave surface. The contact is enforced symmetrically. We have adjusted the
input to be as consistent as possible with other Sandia codes.

2.17 Tied Surfaces

Tied surfaces provide a mechanism to connect surfaces in a mesh that will always be
in contact. Because the surfaces are always tied, the constraints may be represented

86 2 THE SALINAS INPUT FILE

Table 16: Contact Data Parameters

Parameter type description
Surface integer pair master and slave sideset

separated by comma or space
Friction Static Real coefficient of static friction

(defaults to zero)
Search Tolerance Real Radius of search for paired nodes

defaults to 1e-8
Edge Tolerance Real search tolerance beyond an edge facet

defaults to 1/10 search tolerance.
Interaction String node-to-node

node-to-face (not currently supported)
edge-to-face (not supported)
face-to-face (not supported)

by a set of linear multipoint constraints (see Appendix 3.29). Tied surfaces are also
known in the literature as “glued surfaces” or as “tied contact”. They are used
almost exclusively to combine two surfaces of a mesh that have not been meshed
consistently.

There are a number of ways of combining surfaces that have not been consistently
meshed. The simplest method constrains the nodes of the slave surface to lie on
the master surface. In this method, the constraint is called inconsistent because the
mesh does not ensure that linear stress will be maintained across the boundary. The
stress and strain in the region of the constraint will be wrong. However, loads are
properly transferred across the boundaries, so a few element diameters away from
the boundary, the stresses and strains should be approximately correct.

We note that tied surfaces can currently be specified for structural-structural
interfaces, acoustic-acoustic interfaces, and structural-acoustic interfaces (i.e. wet
interfaces). The syntax in the TIED DATA block is the same in all three cases.
In the first case, the nodal displacements on the slave surface are constrained to lie
on the master surface. In the last case, the nodal acoustic pressures on the slave
surface are constrained to match those on the adjacent master surfaces. In the case
of tied structural-acoustic interfaces, it is necessary to insure a weak continuity of
both stress and displacement (velocity) across the wet interface. A future version
of the theory manual will describe this procedure in detail. Also for tied structural-
acoustic interfaces, we recommend that the acoustic surface be defined as the master
(and hence should have its sideset number listed first in the input deck). Defining
the structural surface as the master sometimes causes an error related to singular

2.17 Tied Surfaces 87

subdomain matrices.
We do allow mixing of tied surface cases in a given simulation. For example, one

may have tied acoustic-acoustic and tied structural-acoustic data blocks in the same
input file. However, it is necessary that each sideset be exclusively attached to either
structural elements or acoustic elements. A single sideset cannot simultaneously
contain both acoustic and structural elements. This does not restrict the types of
analysis that can be done, but it may lead to more TIED DATA blocks. However,
this extra input will reduce confusion and likely also reduce potential modeling
errors.

Mortar methods may also be used to tied the surfaces. These methods are more
tightly integrated with the solver, and are currently only available using the FETI-
CF solver (Appendix E). The cost in computing the mortar contribution is higher
than the inconsistent method, but the solution will typically be much better in the
region of the constraint.

In the future, the inconsistent tied surface will be transitioned into a fully con-
sistent algorithm. The default method will become “mortar”.

Tied surfaces are specified by a listing of master and slave side sets. Any number
of tied surfaces may be specified in the input, i.e. more than one tied surface section
may occur in the input. Each tied surface section represents a single logical pairing
of constraint side sets.

TIED DATA
Surface 12, 18
search tolerance = 1e-7
edge tolerance = 1e-8

END

In the example above, sideset 12 is defined as a master surface. Side set 18 is the
slave surface. Each node in the slave surface is tied to the set of nodes in the
corresponding element face of the master surface.

Tied surfaces use a node-to-face search algorithm. In this algorithm, the “search
tolerance” represents the normal distance from a node on one surface to a corre-
sponding face on the other. Thus, the search tolerance will typically be quite small
and represents the amount the two surfaces may not be coincident. This is in con-
trast to a node-to-node search, where the “search tolerance” represents a search
radius. See Figure 2.

Note: The current implementation ties a master and slave surface
that are face connected only. We have not implemented or tested a
capability to tie the edges of shells.

The relevant parameters for tied surfaces are shown in Table 17.

88 2 THE SALINAS INPUT FILE

Node−to−Node Node−to−Face

Figure 2: For node-to-node searches the search tolerance, must be large enough to
capture nearby nodes. For node-to-face searches (as used in tied surfaces), it should
only capture the nearby surface.

Table 17: Tied Surface Parameters

Parameter type description
Surface integer pair master and slave sideset

separated by comma or space
Search Tolerance Real face normal of search tolerance

defaults to 1e-8
Edge Tolerance Real search tolerance beyond an edge facet

defaults to 1/10 search tolerance.
Interaction String node-to-node (not supported)

node-to-face (default)
Method String inconsistent (default most solvers)

mortar (default for CF solver)

2.18 RigidSet 89

2.18 RigidSet

Rigid Sets are intended as a usability tool to permit the analyst to treat a set of
nodes as completely rigid. The input is straightforward.

RIGIDSET set1
sideset 1
sideset 2
nodeset 88

END

The above definition would establish a single set that is tied together. For purposes
of error reporting only, the name “set1” is associated with this example set. If
multiple independent sets are required, then multiple rigidset definitions may be
made.

The relevant parameters for rigidsets are shown in Table 18. Any number of
RigidSet sections may be introduced, each will act independently. Exodus sideset
or nodeset information may be included in the definition.

Table 18: RigidSet Parameters

Parameter type description
sideset integer sideset id
nodeset integer nodeset id

Limitations. Rigidsets meet an important need to tie many nodes together. Gen-
erally they are much more robust than generating collections of RBARs or other
rigid elements. However, it is very easy to generate redundant constraints through
this input. Redundant constraints cause most linear solvers to fail, and we aren’t
good at providing diagnostics. Generally,

1. rigidsets must be completely disjoint, i.e. they may share no common nodes.
If they share a node, they should be put in the same rigid set.

2. None of the nodes in the rigidset should be constrained (as through a boundary
condition).

3. Other constraints (such as RBARS) should not further constrain the set.

This limitation does not prohibit the addition of an RBAR or other constraint
which ties the rigidset to an otherwise unconstrained node.

90 2 THE SALINAS INPUT FILE

2.19 BLOCK

Each element block in the Exodus file, must have a corresponding BLOCK entry
in the input file. This section contains information about the properties of the
elements within the block††.

2.19.1 Block Parameters

There are two main types of block parameters:

1. Parameters exist which are common to most elements. These include:

• Material property references are required for most elements. The material
reference is of the form, material=material id, where material id is
a string representing the material identifier (see section 2.21).

• coordinate frames - optional

• nonlinear behavior - optional

• block damping - optional

• non-structural mass - optional

2. Element specific names and parameters. These properties depend on the ele-
ment type. Clearly shells will require a thickness, while it is meaningless for
solids.

Block Example. An example is provided below.

// the following element block is Tria3
BLOCK 32

material 2
tria3
thickness 0.01

END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The only required argument is the material card
BLOCK 34

††It is not an error to have a block entry in the input file that has no corresponding exodus file
entry. Such an entry will be silently ignored. It is an error to have multiple definitions for the same
block. However, Salinas does not report the error. Which definition is used is not defined.

2.19 BLOCK 91

Table 19: General Block Parameters

Keyword Values Description
nonlinear yes/no blockwise nonlinear behavior
coordinate integer reference coordinate frame
blkalpha Real blockwise mass proportional damping
blkbeta Real blockwise stiffness proportional damping

nsm Real blockwise non-structural mass

material aluminum
END

BLOCK 3
Coordinate 1
Spring
Kx=1e6
Ky=0
Kz=0
BLKBETA=0.0031

END

A list of the applicable attributes for some of the different element types is shown
in Table 21. Each element type is outlined in section 3.

2.19.2 General Block Parameters

Parameters that are generally applicable to almost all blocks are listed in Table 19.
More detailed descriptions are available in the following paragraphs.

Nonlinear Behavior. The nonlinear behavior of the block is controlled by the
nonlinear keyword. The global default for block-level nonlinear behavior is set
in the PARAMETERS section. Within each block, we can override that default
value. For example, to set a block to default to linear behavior, we would have the
following BLOCK definition.

BLOCK 3

92 2 THE SALINAS INPUT FILE

nonlinear=no
material 2
tria3
thickness 0.01

END

Similarly, to turn on the nonlinear behavior for the block, we would have,

BLOCK 3
nonlinear=yes
material 2
tria3
thickness 0.01

END

Note that these block-level nonlinear flags override the global nonlinear default
keyword that is set in the PARAMETERS section.

Coordinate Frame Reference. The reference coordinate system may be defined
in a block. This definition applies to all the elements of the block and the associated
materials. At this point, the coordinate system is only recognized for a subset of the
elements (solid elements and springs). Further information on coordinate systems
may be found in section 2.22.

Block Specific Damping. In section 2.28, various methods of specifying the
damping parameters for a model are identified. In addition to these methods, block
specific damping parameters may be applied. These apply a stiffness (or mass)
proportional damping matrix on an element by element basis within the block. Thus,
if a model is made of steel and foam, one could apply a 5% stiffness proportional
damping term to the foam, but leave the steel undamped.

There is no physical justification for proportional damping, and there is no ex-
pectation that it will accurately represent damping mechanisms in a structure. How-
ever, it is easy to apply, and there are cases where proportional damping may reveal
a need for more accurate damping models. As with all damping models, the effects
depend on the solution type. For example, both statics and eigen analysis ignore
the damping matrix.

The damping matrix generated from block specific damping is defined as follows.

D =
nblks∑

i

αiMi + βiKi (21)

2.20 Macroblock 93

Table 20: Non-Structural Mass Units

Element Type Units Example
One Dimensional mass/length lbs / in
Two Dimensional mass/area lbs / sq-in
Three Dimensional mass/volume lbs / cu-in

Where D is the real system damping matrix, and αi and β1 are the proportional mass
and damping coefficients for block i. These coefficients are completely analogous to
the system level coefficients described in section 2.28. The damping contributions
from these block parameters are always added to the other contributions.

Block specific damping is applied using the blkalpha and blkbeta parameters.
Also see section 2.21.9 for material modal like damping.

Non-Structural Mass. An element block may define a non-structural mass (nsm)
to be applied in addition to the elements’ internal mass. This can be used to sim-
ulate an external load being placed on the elements. It is specified as a pseudo
density, and the units depend on the type of element being used. Table 20 list these
units.

The following is an example of how to use non-structural mass in the input file:

//nsm specified in pounds per square inch
BLOCK 3

material 2
tria3
thickness 0.01
nsm 0.005

END

MATERIAL 2
density 0.5

END

2.20 Macroblock

It is possible to overload a single element block in the Exodus file to be used simul-
taneously as several different element types. To use this feature, the BLOCK entry

94 2 THE SALINAS INPUT FILE

Table 21: Element Attributes

Element Type attr keyword Description
ConMass 1 Mass concentrated mass

2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG
Beam 1 Area Area of beam

2,3,4 Orientation orientation vector. For
the orthogonal direction

5 I1 First bending moment
6 I2 Second bending moment
7 J Torsion moment

9,10,11 offset beam offset
Spring 1 Kx spring constant in X

2 Ky spring constant in Y
3 Kz spring constant in Z

Triangle 1 thickness thickness
2 offset shell offset in normal direction

Quad 1 thickness thickness
2 offset shell offset in normal direction

2.20 Macroblock 95

should list the ids of the new macroblocks, which will share the same geometry from
the Exodus file. Additional parameters should not be included in the BLOCK
specification as the original element block will be treated as a ”dead” element. For
every macroblock listed, a Macroblock entry must be present in the input file. A
Macroblock entry should look exactly like a normal BLOCK entry except for
the keyword. The macroblock ids must be unique and different from any existing
block ids.

Macroblock Example. An example is provided below.

// the following element block is associated with block 1 in the
// exodus file. It specifies which macroblocks use this block.
BLOCK 1

macroblock 11 12
END

// the following macroblocks specify the types to use for the block
MACROBLOCK 11

dashpot
k=1e6
c=1e4
cid=1

END

MACROBLOCK 12
spring
Kx 1e+3
Ky 1e+3
Kz 3e-1

END

Macroblocks 11 and 12 will be used as though there are two distinct element blocks
in the Exodus file, one treated as a dashpot and the other as a spring. Because the
macroblocks do not actually exist in the exodus file, element variables cannot be
associated with them. However, it is still possible to obtain some element variable
results from the .rslt file (section 2.7). Macroblock results will be specially labeled
in this file because their elements’ ids are not unique.

96 2 THE SALINAS INPUT FILE

2.21 MATERIAL

Most element blocks must specify a material. Details of that material are included
in the material section. The material section contains a material identifier (which
is usually an integer, but may be any string), an optional name keyword followed
by a material name, a material type keyword and the necessary parameters. The
different material types and their parameters are summarized in Table 23.

For example,

MATERIAL 3
isotropic
name "steel"
E 30e6
nu .3

END

Deterministic materials may be input as isotropic, orthotropic, orthotropic prop,
anisotropic, or isotropic viscoelastic. In addition, stochastic isotropic mate-
rials may be specified as S isotropic.

2.21.1 Isotropic Material

Isotropic materials require specification of two of the following parameters.

Parameter Description
E Young’s Modulus
nu Poisson’s Ratio
G Shear Modulus
K Bulk Modulus

Isotropic materials are the default, and the keyword isotropic is not required.

2.21.2 Anisotropic Material

Anisotropic materials require specification of a 21 element Cij matrix corresponding
to the upper triangle of the 6x6 stiffness matrix. Data is input in the order C11,C12,
C13, C14, C15, C16, C22, etc. The Cij must be preceded by the keyword Cij. The

2.21 MATERIAL 97

keyword anisotropic is also required. Materials are specified in the order xx, yy,
zz, zy, zx, xy. Note that this ordering varies in the literature. It differs from
the ordering in Nastran and Abaqus, but is consistent with much of the published
materials science data. An example input file with an anisotropic material is found
in section A.2.

2.21.3 Orthotropic Material

Orthotropic material entry is identical to the anisotropic case with the exception
that the keyword orthotropic replaces anisotropic, and only 9 Cij entries are
specified. These entries correspond to C11, C12, C13, C22, C23, C33, C44, C55 and
C66. Like the anisotropic material definition, the order is xx, yy, zz, zy, zx, xy.

Alternatively, an orthotropic material may be specified using orthotropic prop
and the material parameters E1, E2, E3, nu23, nu13, nu12, G23, G13, and G12
as shown in the following example. Note that all elastic materials must satisfy re-
quirements that the elasticity matrix is positive definite.

Material honeycomb
orthotropic_prop
name ’aluminum honeycomb in Mpa’
E1 = 508.7
E2 = 7641.0
E3 = 14750.0
Nu12 = 1.293
Nu23 = 0.3299
Nu13 = 0.3367
G12 = 115
G23 = 2320.
G13 = 450.
density=0.5

END

A single orthotropic layer may be specified using orthotropic layer. An or-
thotropic layer must specify 4 of the above parameters (E1, E2, nu12, G12). Here
is an example:

Material 13
orthotropic_layer
name ’ortho layer 1’
E1 = 508.7

98 2 THE SALINAS INPUT FILE

E2 = 7641.0
Nu12 = 1.293
G12 = 115
density=0.5

END

If sensitivity analysis is being performed (see section 2.27), one indicates the param-
eters for analysis by following these parameters with the +/- characters. In the first
entry method, a sensitivity analysis must be performed on all 9 parameters. In the
second, each individual parameter must be requested individually. The concept is
that the sensitivity is performed with respect to the labeled parameters, i.e. either
the set of Cij parameters, or each individually labeled E1 term.

2.21.4 Stochastic Material

For stochastic materials, all material properties are determined by a table look-up,
based on the element ID. The file name for the table lookup is taken from the name
identifier. The file is a standard text file with the first column corresponding to the
element ID. The second column is the bulk modulus, K, and the third (and final)
column is the shear modulus, G. The element IDs in the file need not be continuous,
but they must be sorted in increasing order. Thus the S isotropic data lookup file
contains the element ID, the bulk modulus and the shear modulus, with one line for
each element. The stochastic material model is very preliminary and is expected to
change significantly in the next few years. An example section from the input file
is presented below.

MATERIAL 3
s_isotropic
name "mat3.txt"
density 0.288

END

From within “mat3.txt” the data looks like the following. The last two columns
are bulk and shear moduli respectively.

1 40e6 20e6
2 40e6 20e6
4 40e6 20e6
9 40e6 20e6
10 40e6 20e6
11 40e6 20e6

2.21 MATERIAL 99

2.21.5 Linear Viscoelastic Material

Linear viscoelastic materials require the specification of the density, and the limiting
moduli E g, E inf, G g, G inf. The subscript ’g’ refers to the glassy modulus, which
occurs at t = 0, or ω = ∞. The subscript ’inf’ refers to the rubbery modulus, which
occurs at t = ∞, or ω = 0. In addition the Prony series for the viscoelastic materials
have to be specified using keywords K coeff, K relax, G coeff, and G relax. All of
these parameters are required.

For the bulk modulus K, the Prony series parameters are defined by the following
equation:

K(t) = Kinf + (Kg −Kinf)
∑

i

Kcoeff [i] ∗ e
− t

Krelax[i] (22)

A similar equation holds for the shear modulus. Note that, the K coeff and G coeff
MUST sum to 1.0 (individually). Otherwise, the formulation is inconsistent. That
is, ∑

i

Kcoeff [i] =
∑

i

Gcoeff [i] = 1.0 (23)

Note that the number of terms in K coeff and K relax must be the same, and the
number of terms in the G coeff and G relax must be the same. However, the number
of terms in the K series does not have to equal the number of terms in the G series.
Thus, one could simulate a case where the material shear modulus G is viscoelastic,
but the bulk modulus is not. In this case, the latter would have no terms in its
series.

Optional parameters for viscoelastic materials include reference (T 0) and cur-
rent temperature (T current), and the WLF constants C 1 and C 2. (more expla-
nation of the Williams-Landel-Ferry (WLF) equation is given below). Also, two
constants may be specified that describe the curve fit for the shift function, a T1
and a T2, in the case when T current - T 0 is negative. The equation was provided
by Terry Hinnerichs and is a good characterization of many viscoelastic materials.
Its form is

a T = a T1 ∗ (1− ea T2∗(T current−T 0)) (24)

If these optional parameters are not specified, default values are used, as shown
in the table below. Note that equation 24 will only be used to compute the shift
functions if the parameters aT 1 and aT 2 are specified. Otherwise, the standard
WLF equation is used, as described below.

If the parameters aT 1 and aT 2 are not specified, then the shift factors are
computed using the WLF equation. This equation is frequently used to determine
an approximate set of shift factors when experimental data for a particular material

100 2 THE SALINAS INPUT FILE

Table 22: Default Parameters for Viscoelastic Materials

parameter default value
T 0 0.0
T current 0.0
C 1 15.0
C 2 35.0
aT 1 6.0
aT 2 .0614

is not at hand. The shift factors computed from this equation are used to scale the
coefficients in the Prony series. The shift factors computed from the WLF equation
are a strong function of temperature. The WLF equation is as follows

log(aT) = − C 1(T current− T 0)
C 2 + T current− T 0

(25)

where T current is the current temperature in the block, and T 0, C 1, and C 2 are
material parameters that are determined experimentally. If C 1 and C 2 are not
known for a particular material, then the default values given above are typically
used. Typically, T 0 is the glass transition temperature of the material of interest.
More explanation of the WLF equation can be found in the books by Aklonis,9 and
Ferry.10

After computing the shift factors using one of the two approaches given above,
the relaxation times are shifted. This occurs before computations begin, using the
relations

Gcoeff [i] = aT Gcoeff [i] (26)
Gcoeff [i] = aT Gcoeff [i] (27)

(28)

These shifts are automatically computed given T 0, T current, C 1, and C 2, so that
the user does not need to shift the relaxation times beforehand. Note that if these
parameters are not specified in the input file, then they are given default values that
result in no shifting of relaxation times. In such a case, aT = 1.

An example material block for a linear viscoelastic material looks like:

MATERIAL 9
isotropic_viscoelastic

2.21 MATERIAL 101

name "foam"
T_0=0
T_current=25
C_1=1
C_2=2
aT_1=6.0
aT_2=.06
K_g 30.0e6
K_inf 10.0e6
G_g 10.0e1
G_inf 12.0
K_coeff .5 .5
K_relax 3.0 2
G_coeff .5 .5
G_relax 1 3
density 0.288
END

Note that the coefficients of both K and G sum to 1.0. This is necessary for a
consistent formulation.

A note on viscoelastic materials: when using viscoelastic materials in a nonlin-
ear transient simulation, it is necessary to specify ”nonlinear=no” in the BLOCK
section of the viscoelastic block. This is because different internal force mechanisms
are called for linear and nonlinear cases, and viscoelastic materials in Salinas only
support linear constitutive model and small deformation.

We also note that if viscoelastic materials are used in a statics simulation, then
the material is assigned the properties Ginf and Kinf . This is because in a slow
(static) loading, the material would respond with these material properties since
they are the long-time or slow response properties.

2.21.6 Acoustic Material

Linear acoustic materials require the specification of the fluid density, and the linear
speed of sound. In addition, the keyword scalaracoustic must be in the material
block.

MATERIAL
name "air"
scalaracoustic

102 2 THE SALINAS INPUT FILE

density 1.293
c0 332.0

END

Nonlinear acoustic materials require one additional parameter, B over A, which
is a measure of fluid nonlinearity. For air, B over A = 0.4. Tables of B over A for
various fluids can be found in.11

2.21.7 Temperature-Dependent Material Properties

Material properties in Salinas can be specified to be temperature dependent. Tem-
perature dependent material properties are only supported when temperatures are
read in from a Calore output file. Thus, in that case, the material properties would
vary from element to element, since the temperatures vary with each element. When
temperatures are specified on a block-by-block basis, the temperature-dependence
of the material properties can be specified explicitly in the input deck.

For linear elastic materials, an example of specifying temperature dependent
properties is given below.

MATERIAL 1
E 10e6
function=1

alphat .001
tref 100
nu 0.0
density 7700.0

END

MATERIAL 2
E 10e6
function=2

alphat .001
tref 100
nu 0.0
density 7700.0

END

FUNCTION 1
type LINEAR
data 0.0 4.0
data 5.0e9 4.0

2.21 MATERIAL 103

END

FUNCTION 2
type LINEAR
data 0.0 3.0
data 5.0e9 3.0

END

In this case, the elastic modulus of material 1 is specified by function 1, and the
elastic modulus of material 2 is specified by function 2. The moduli of each element
will be determined from its temperature and an interpolation on the function. In this
example, the functions are trivial, and thus the moduli of materials 1 and 2 will be 4
and 3, respectively. Note that any of the 4 elastic constants k, g, e, ν can be specified
as temperature dependent, and can be given different functions. In this example, the
Poisson ratio is constant and only the elastic modulus is temperature dependent.
Also, even though values of 10e6 are given for the moduli in this example, these
values are overridden by the presence of the line ”function=1” and ”function=2”.

We note that for viscoelastic materials, functions do not need to be specified in
the material block to designate temperature dependence of the shift factors. This
is accounted for automatically. See the section on viscoelastic materials for more
details.

Currently, only linear elastic and linear viscoelastic materials can be given temperature-
dependent material properties.

2.21.8 Density

For solutions requiring a mass matrix, all material specifications require a keyword
density followed by a scalar value.

Table 23: Material Stiffness Parameters

material type parameters
isotropic any two of K, G, E or ν
orthotropic nine Cij entries
orthotropic prop E1, E2, E3, nu23, nu13, nu12, G23, G13, G12
anisotropic 21 Cij entries
S isotropic file containing K and G

104 2 THE SALINAS INPUT FILE

2.21.9 CJetaFunction

For the CJdamp solution method (see section 2.1.5), a frequency dependent damp-
ing coefficient, η(f), may be specified‡‡. All other solution methods will ignore this
keyword. The CJetaFunction keyword requires as a parameter the identifier of
a function. Its use is specified in the following example. See section 2.23 for details
in specifying the function. If no function is specified, the block will be treated as if
the function were identically zero everywhere.

MATERIAL 1
E=10.0E6
NU=0.28
density=0.098
cjetafunction=1

END

function 1
name ’function to use for material 1 eta’
type linear
data 0.0 0.001
data 100 0.010
data 200 0.030
data 400 0

end

The function specifies the frequency, amplitude pairs for η. The frequencies are
in the same units as the modal frequencies (i.e. there is no factor of 2π, and they are
usually supplied in Hertz). The CJdamp solution process interpolates the function
at the eigen frequencies to determine the effective damping for any particular mode.

2.22 COORDINATE

Coordinate systems may be defined for reference to the materials and boundary
conditions. As reported in the “history” section, nodal results may also be reported
in arbitrary coordinate frames in the history file only (see section 2.9). Note that all
nodal locations, outputs, etc. are always defined in the basic coordinate system in
the standard exodus files. These new coordinate systems are always defined based
on three locations, which are defined in the basic coordinate system. These locations
are illustrated in Figure 3.

‡‡η is twice the normal modal damping coefficient. Thus, if eta=0.02 for all materials, the
equivalent modal damping will be 1 percent.

2.22 COORDINATE 105

1. The location the origin of the new coordinate system, v1.

2. A point on the Z axis of the new system. This is illustrated in the figure by
the vector v2. Note however, that the location is required, which is the vector
sum of v1 + v2.

3. A point in the X̃Z̃ plane of the new system, illustrated by the vector v3. Note
that vector v3 need not be orthogonal to v2, but it may not be parallel to it.

x
�

�
��z

y

@
@

@
@@Rz̃

�
�

�
��

x̃

A
A

A
A

AAỹ

�
�

�
�

�
��>

�������:

v1
v2

v3 in x̃z̃ plane

Figure 3: Coordinate System Definition Vectors

Coordinate systems for cartesian, cylindrical and spherical coordinates may be de-
fined. In the case of noncartesian systems, the XZ plane is used for defining the
origin of the θ direction only.

This example creates a cylindrical system located at a point (1,1,1) with the cylin-
drical axis in the (0,0,1) direction and the radial coordinate in the global Y direction.

Coordinate 7
cylindrical
1 1 1
1 1 2
1 2 1

END

The keywords for the coordinate system definitions are:

106 2 THE SALINAS INPUT FILE

1. RECTANGULAR or CARTESIAN to define a cartesian system,

2. CYLINDRICAL for a cylindrical, i.e. polar system, and

3. SPHERICAL for a spherical system.

If “input” is selected in the ECHO section then the transformation matrix will
be output in the .rslt file (section 2.7). The transformation matrix is a unitary
matrix which can be used to transform vectors from one system to another. If we
let T be the matrix reported in the .rslt file, then the transformation from the
basic system to the rotated frame is given by,

vnew = T T vbasic

where vnew is the vector in the new coordinates,
vbasic is the vector in the basic system, and
T T is the transpose of the .rslt matrix reported.

While the history file provides a convenient means for transforming coordinates,
its applicability may be somewhat limited. In particular, only a single history file
is written in each analysis, and only one coordinate frame may be output per node
(see section 2.9).

2.23 FUNCTION

Time or frequency dependent functions for transient and frequency response analysis
can be defined using the function section. The following examples illustrate the
use of this section.

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION 2
// This is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945.

2.23 FUNCTION 107

// The equation is y(t)=-800*t^2 + 8.9943*sqrt(t)

type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

The keywords for the function definitions are:

1. TYPE to define the functional form,

2. NAME for reference in echo and output, and

3. DATA for the functional parameters.

Currently there are four types of functional forms, linear, table, polynomial
and loglog. The data elements are defined in the following paragraphs.

2.23.1 Linear Functions

For linear functions, the data elements are points of the function where the user
defines the value of the independent variable (e.g. time) and the corresponding
value of the function. Linear interpolation is used to find all other values of the
function. In order to make the linear interpolation unique, the order of the input
data is important. Input checks will ensure that time on subsequent data points
is always greater than or equal to time on the previous data point so that curves
cannot double back on themselves. For example,

FUNCTION 3
name "illegal_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.05 1.
data 0.04 0. //illegal. the first column must never decrease

END

Linear functions will extrapolate by using the value of the nearest data point. For
example, in the following function, f(t=0.3) = 0.5.

108 2 THE SALINAS INPUT FILE

�
�

�
�

�� �
�

�
�

��

illegal segment

t
t t

t
Figure 4: Linear function #3. ”illegal fun”

FUNCTION 5
name "extrap_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.02 0.5

END

�
�

�
�

��
HH

HHHH -

t
t

t d

Figure 5: Linear function #5. ”extrap fun”

2.23.2 Functions using Tables

Functions may be specified by reference to a linearly interpolated table (as discussed
in section 2.25). The table must be of dimension=1. Tables are very similar to the
linear functions described above with several important differences.

1. Referencing a value of a table beyond the valid range is an error. This is
seldom a problem in frequency domain analysis, but could often be an issue
for time domain analysis.

2. Tables can be more memory efficient that linear functions in some cases where
there is a large amount of data. This is especially important if only a few
processors need access to that data.

2.23 FUNCTION 109

The function in the following example is a tabular representation of the data of
Figure 5 and Function 5 above.

FUNCTION 7
type table
tablename=example7

END

TABLE example7
dimension=1
size=5
datafile=’example7.txt’
origin 0.0
delta .01

END

Within the datafile, “example7.txt”, the following data would be represented.

0.0
1.0
0.5
0.5
0.5

Of course, the linear function can be evaluated for any time, and the table is limited
to the range 0-0.04. Table type functions require the tablename keyword.

2.23.3 Polynomial Functions

For polynomials, the data points given are the exponent of the independent variable
and a scale factor for that term. The independent variable taken to any real power
will always be evaluated as positive. If powers are repeated, their coefficients will
sum. For example,

FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.
data 2.0 0.1
data 1.0 0.5

END

110 2 THE SALINAS INPUT FILE

is equivalent to

FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.5
data 2.0 0.1

END

The function value as a function of the independent variable t is,

f(t) = 1.5t + 0.1t2.

2.23.4 LogLog Functions

In frequency domain analysis, log/log functions are commonly used for application
of loads. This is particularly true for random vibration inputs which are commonly
specified on log/log plots. The loglog option allows linear interpolation on a log/log
plot so that only the corner frequencies need be specified. An example follows.

FUNCTION 1
name "my_loglog"
type loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

2.23.5 Random Functions

There are two different types of a random function distribution: a uniform and a
Gaussian distribution. For both distribution types, the values are randomly gener-
ated according to the range that is input.

For uniform distributions, the left range number is the lower bound and the
right number is the upper bound, both inclusive. For a Gaussian distribution, the

2.23 FUNCTION 111

left number is the mean (or center of the distribution), and the right number is the
standard deviation.

The seed determines the seed for a new sequence of pseudo-random numbers.
There are two options, auto or a positive integer number. With auto, the computer
clock is used to seed the generator, which will nearly always give an unpredicatable
string of random numbers. However for repeatable results, a manual seed may
be given. The sequence of numbers is random, but the same random sequence of
numbers generated from a specific seed is always the same. Please note that the
number 0 acts the same as if you had entered auto as the seed.

Random functions use the pseudo-random number generator in the rand() fuc-
ntion of the C library.

FUNCTION 2
name "some_function"
type random
distribution gaussian
range -1.0 4.0
seed auto

END

That example would produce the distribution shown in figure 6:
Parameters are shown in Table 24:

Table 24: Random function parameters
Parameter Type Values
distribution string uniform or gaussian
range two Real numbers lower and upper bound of distribution (uniform)

OR mean and standard deviation (gaussian)
seed string/integer auto OR any integer

2.23.6 User Defined Functions

A user defined function capability has been added to Salinas to permit application
of generic functions that cannot be readily evaluated using built in functions. Note
the following.

1. User defined functions are typically quite slow.

2. By default, user defined functions are evaluated at each application point on
the structure (i.e. each node in a nodeset). Thus, they must be evaluated

112 2 THE SALINAS INPUT FILE

−20 −15 −10 −5 0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
D

F

Value

Mean: −1 StndDeviation: 4

Figure 6: Example Gaussian output.

2.23 FUNCTION 113

many times. This with their slow evaluation can result in significant time
for their evaluation. If you can do the problem another way, it is strongly
recommended that you do so.

3. User defined functions are impossible to fully test in our test environment.

4. User defined functions may be less robust than other methods.

Salinas uses the runtime compiler (RTC) environment that was developed for Ale-
gra.12 This environment was chosen for several reasons, but the primary goals are
to provide capabilities that cannot be performed in other ways, and to do with a
simple, portable system.

The Alegra RTC is a library that compiles a subset of the “C” language in run
time. The user is referred to the RTC documentation for details of the library.
The RTC function is referenced in the salinas input just as any other function. For
example,

LOADS
nodeset 1

function=1
force=0 0 1

END

FUNCTION 1
type=USER
rtcfile=’example.cc’

END

The function “type” is defined as “USER”. In addition, the “rtcfile” parameter must
be specified. The rtcfile points to the file containing the source for the function.
Typically the file name has a “.cc” extension (to indicate that it is C++ source),
but any filename is acceptable, and either a relative or a full path may be specified.

The permitted parameters are listed in the following table.

Parameter Argument Description
rtcfile string the file name containing source. Required!
timeonly none flag. If this exists, no spatial dependence is

allowed in the function.

The Source File: The rtcfile points to a file containing source code to be com-
piled. This is a subset of the “C” language. There are some idiosyncracies which
we list here.

114 2 THE SALINAS INPUT FILE

Variable I/O Description
time input the current time for the function evaluation.
retvar output The function return value
coord input The undeformed coordinates of the node
disp input The deformation vector. Dimension=7

velocity input The velocity. Dimension=7
acceleration input The acceleration on this node.

Table 25: Predefined RTC variables

• No comment fields are allowed.

• No function definitions are allowed.

• Data is passed to and from Salinas using specifically named, predefined vari-
ables. These are listed in Table 25.

We provide an example below for the case of a force that is inversely proportional
to the deformed Z coordinate of each node in a sideset. This distance is labelled R
in the script, it is checked for divide by zero, a function value is computed, and the
value returned in the retvar variable. This function will be run on all the nodes in
a side set.∗

double R=disp[2]+coord[2];
retval=1e10;
if (abs(R) > 1e-10){

retval = 1.0 / R;
}

2.24 MATRIX-FUNCTION

This section provides for input of a matrix function as is used in a cross correlation
matrix for input to a random vibration analysis. In the limit of a single input these
reduce to a single function (as described in the previous section). Note that a matrix-
function can have arbitrary symmetry and can be complex. An important feature

∗ The HowTo document has an example of an RTC analysis together with suggestions on de-
bugging.

2.24 MATRIX-FUNCTION 115

of the matrix-function is that each entry of the matrix is a function of frequency (or
time).

The Matrix-Function is illustrated in the following example.

MATRIX-FUNCTION 1
name ’cross-spectral density’
symmetry=hermitian
dimension=2x2
nominalt=20.1
data 1,1

real function 1 scale 1.0
data 1,2

real function 12
imag function 121 scale -3.0

data 2,2
real function 22 scale 0.5

END

Matrix functions have the following parameters.

NAME allows you to optionally enter a string by which the matrix-function will
be identified in subsequent messages.

SYMMETRY identifies the matrix symmetry. Options are “none”, “symmetric”,
“asymmetric” and “hermitian”. If the matrix is not square, only “none” can
apply. The default for this optional parameter is “symmetry=none”.

DIMENSION specifies the dimension of the matrix. If not specified, it defaults
to 1x1. The dimension is specified as the number of rows, an “x” and the
number of columns. No space should be entered between the terms.

DATA Each data entry specifies one entry in the matrix-function. The data entry
must be immediately followed by the matrix location specified as a row, col-
umn pair. Again, no spaces may be inserted in the location entry. The data
parameters uses two keywords.

• “real” identifies the real component of the entry. It must be followed by
a function reference (see section 2.23), and optionally by a scale factor.

• “imag” identifies the imaginary component of the entry. It must be fol-
lowed by a function definition, and an optional scale factor.

116 2 THE SALINAS INPUT FILE

NOMINALT Used only for echoing the matrix values. If input is specified as an
Echo option (see section 2.7) general information from the matrix function are
written to the log file (the .rslt file). If, a nominalt entry also exists, then the
matrix entries are written for that nominal time (or frequency). Only one such
output can be specified. It provides a means of checking the input to assure
the matrix values are correct at a single time (or frequency) value.

2.25 Table

The Table section permits construction of tabular data in 1 to 4 dimensions. Ta-
bles must be referenced in other structures for their data to be useful. Tables are
characterized by data structures which are sampled at uniform intervals. Tables
offer the following benefits.

• They provide implicit linear interpolants for values between tables.

• They are fairly flexible structures which are more memory friendly than func-
tions (for some applications).

• Tables are the only way to introduce multi-dimensional data.

Each Table includes a number of required and optional parameters, as shown
below.

Table 26: TABLE Section Options
Parameter Default Description
dimension required number of dimensions in the table
size required table size in each direction
datafile required ASCI file containing the values at each point
origin zero origin of the table (for scaling)
delta 1 interval between points in each direction

The dimension identifies the shape of the table. For example, dimension=2
indicates a table of xy values. All other quantities depend on this dimension.

The size parameters indicate the individual hypercube dimensions of the table.
For example, in a table of dimension=2, the size parameter indicates the number
of rows and columns in the table. The total number of entries is the product of all
the terms in the size.

The datafile parameter contains the name of a text file containing all the data
values in the table. The values are entered with the first dimension cycling faster.
Thus, in a dimension=2 table, all the entries for column 1 are first entered, followed

2.26 CBModel 117

by column 2, etc. The layout of the file is not important. Data values are read one
at a time as they are separated by white space. There must be exactly the correct
number entries in the file. No comments are permitted in the datafile.

Note: We recommend that the values in the table be entered as a
single entry per line. It is very confusing to enter multiple entries in
the table on a single line. The first row is interpreted as the entries in
the first column, and so on. This leads to the table being interpreted
as the transpose of the entered data.

Both the origin and the delta parameters are optional values provided for
interpolation. The implicit integer entries of the table are converted to real values
for function evaluation by use of these parameters.

Function evaluations within the range of the table can be linearly interpolated.
The range in each direction is determined by the following.

origini < rangei < origini + (deltai · sizei) (29)

Evaluations of the table for regions outside the valid range result in a warning
message.

In contrast to a function (see section 2.23), tables require memory only as
needed. All processors store the full input file in memory. However, tables can store
a large amount of data in the datafile. This file is opened and data is read from
it only as needed. For this reason, tables are preferred over functions when only a
few processors may need access to a large amount of data. Obviously, tables are the
only option when a function of more than one variable is required.

An example of a two dimensional table definition is shown below.

Table example-2d-table
dimension=2
size = 200 300 // note: don’t put in an x
origin 1.0 0.0 // optional. defaults to 0 0
delta 1.0 0.9 // optional. defaults to 1 1
datafile ’junk.txt’

END

2.26 CBModel

The CBModel section provides a method of specifying information related to a
Craig-Bampton model reduction of the entire structure. It is required by the CBR
method (section 2.1.7).

118 2 THE SALINAS INPUT FILE

The “interface” is that portion of the model which will interface to the external
structure. The interface is defined by collections of nodes specified as nodesets or
sidesets. After eliminating boundary conditions, the active degrees of freedom on
the nodes become the interface.

Table 27: CBModel Parameters
Keyword type Description
nodeset integer exodus nodeset. Must include the nodeset id.
sideset integer exodus sideset. Must include the sideset id.
format string specifies the output format.

matlab - matlab .m format
dmig - nastran DMIG format
netcdf - netcdf format†

file string specifies the file name for output.
output vector string ’yes’ to output the constraint modes and

fixed interface normal modes
GlobalSolution string ’yes’ to compute the eigen solution of the

reduced system.
†The netcdf format is the database upon which exodusII is built. A translator from this
format to nastran output4 format is available.

The supported keywords for the CBMODEL section are shown in Table 27. The
keywords are described below.

nodeset: The nodeset keyword specifies the nodes to be placed in the interface.
Nodesets are defined in the exodus file. An integer nodeset ID must follow the
nodeset keyword. Alternatively, a list of nodesets (in matlab type format) can
be specified. This is identical to the history file definition of section 2.9.

sideset: A sideset may also be used to specify the interface nodes. Any number
of nodeset and sideset combinations are allowed. The interface is the union of
all such entries.

format: The preferred format is the netcdf format. This is actually a superset of
the exodus format. It is the format that must be used if the reduced model
is to be inserted into another Salinas model as a superelement. The dmig
format is for use with nastran, and will probably be dropped in the future. It
contains only the reduced system matrices (no maps, coordinates, etc). The
matlab format is a convenience.

2.26 CBModel 119

Note that the netcdf format may be converted to the other forms using a
stand alone translator, ncdfout.

file: The file keyword is required to specify the output file name.

output vector: Specification of the output vector provides output of the con-
straint modes and fixed interface modes used to compute the reduced order
system.

GlobalSolution: As a convenience, we will optionally compute the eigen values of
the reduced system. It is strongly recommended that these values be compared
with the eigenvalues of the full system to insure that the model has converged
over the frequency of interest.

Data in Table 28 will be written to a file. The Output Transfer Matrix (or
OTM) depends on data in the History section (see section 2.9). Specifically, the
output nodes and elements, and the output variables are specified in the history file
as if they were to be output to a history file. For simplicity, and because the OTM
describes a linear transfer matrix, only a limited subset of results are provided. In
particular, displacements and the natural strains and stresses may be written. The
transfer matrix provides the following computation. u

ε
σ

out

=

 OTM

[q
uint

]

=

 Φu Ψu

Φε Ψε

Φσ Ψσ

[q
uint

]

Here q is the amplitude of the internal constraint modes (typically computed in
the next level analysis), and uint is a vector of interface displacements. The fixed
interface modes (eigen modes of a clamped boundary) are represented by Φ, and
the constraint modes by Ψ.

The left hand side vectors represents internal results (displacement, strain and
stress) which are computed from the interface results. Any of the output results may
be omitted, and the OTM will retain only nonzero components. For example, if only
displacements are required, the matrix reduces to [Φu Ψu]. The OTM matrix is a
rectangular matrix, and it is typically full. An example CBModel section follows.

CBMODEL

120 2 THE SALINAS INPUT FILE

Table 28: Data output for Craig-Bampton Reduction

Variable Description
NumC number of constraint modes

NumEig number of fixed interface modes
Kr Reduced stiffness matrix.
Mr Reduced mass matrix.

cbmap A two column list providing a map from each interface degrees
of freedom to the node and coordinate direction of the global
model.
The first column of this list is the node number (1:N) in
the structure. The second column indicates the coordinate
direction as follows.

Number Description
1 x
2 y
3 z
4 Rotation x
5 Rotation y
6 Rotation z
7 acoustic pressure

The “cbmap” has the same number of rows as Kr or Mr.
OutMap A map of the nodes in the output transfer matrix. OutMap(i)

is the global node number for each node in the output. There
are always 6 rows of output for each node. Thus OutMap(1)
corresponds to rows 1 through 6 in the OTM.

OTM Output Transfer Matrix to provide a transfer function from
the interface dofs to internal degrees of freedom or other re-
sults.

OutElemMap A map of the elements in the output transfer matrix, OTME.
OutElemMap(i) is the global element number for each ele-
ment in the output. There are always 6 rows of output for
each element.

OTME Output Transfer Matrix to provide a transfer function from
the interface dofs to internal elements.

2.27 SENSITIVITY 121

nodeset=1:2 // nodes from nodeset 1 and 2
format=netcdf // use a netcdf format file
file=’junk.ncf’

END

NOTE:
In release 2.2 we released the OTM output capability. This permits an analyst to
output the reduced order model of the entire structure for use in another code that
supports superelements (such as MSC/Nastran). In a subsequent release, we will add
the capability to input these matrices as a superelement in Salinas. At that point
one could perform a Craig-Bampton reduction to generate a reduced order model of
that portion of the structure. A follow up analysis could use this as a superelement.
See details in Figure 7.

2.27 SENSITIVITY

This section controls global parameters related to sensitivity analysis. Sensitivity
analysis is not performed in Salinas unless this section is present in the input file.
The following example illustrates the legal keywords.

SENSITIVITY
values all
vectors 1 thru 3 5 7 thru 9
iterations 8
tolerance 1e-7

END

The keywords values and vectors are used to control what types of sensitivities
are computed for which cases in the analysis. In modal analysis, these refer to
the eigenvalues and eigenvectors, respectively, and the case numbers represent the
mode numbers. In static and transient analysis, vectors refers to the displacement
vector results, and values has no meaning. Also, in modal analysis, eigenvalue
sensitivities are always computed when eigenvector sensitivities are requested for a
mode. Allowable values are:

vectors all // compute for all cases/modes
vectors none // compute for no cases/modes
vectors // default, same as all
vectors 1 2 3 5 // cases/modes 1,2,3,5
vectors 1 thru 3 5 // using thru to define range

122 2 THE SALINAS INPUT FILE

Complex mesh
Component

K, M, OTM

superelement
matrices

Initial Analysis

Analysis 2a Analysis 2b K, M, OTM

superelement
matrices

Figure 7: An initial analysis using CBR can be applied to reduce a complex com-
ponent to much smaller matrices. In subsequent analyses the superelement replaces
the complex component in the system analysis. There is little loss of accuracy, but
significant computational benefit.

2.27 SENSITIVITY 123

Omitting the keyword vectors (or values) is equivalent to not requesting those
sensitivities; in other words, it is equivalent to vectors none. The keywords
iterations and tolerance are used in computing eigenvector derivatives. The
default values are 10 and 1.0e-06, respectively.

Sensitivity results are scaled by multiplying the derivative with respect to a param-
eter by the nominal value of that parameter. In this was, the units of the sensitivity
coefficients are the same as the units of the nominal response results. Furthermore,
in order to determine the absolute change in a response resulting from a relative
change in a parameter, simply multiply the sensitivity of the response with respect
to that parameter by the relative change. For example, multiply by 0.10 for the
effect of a 10% change in the parameter.

Sensitivity results are output to the same file as the nominal results. The arrange-
ment of the output varies depending on the analysis. For statics, the nominal result
is output, followed by the sensitivity result for each parameter. For eigenanalysis,
the nominal frequencies and eigenvectors are output, followed by the eigenvalue and
eigenvector sensitivities with respect to the first parameter, the second parameter,
and so on. The eigenvalue sensitivities are placed in the time field of each output
record, just as the frequencies are for the nominal modal parameters. For transient
analysis, the nominal response for each time step is output, followed by the sensitiv-
ities for that time step. Then the nominal results for the next time step are output,
and so on.

The selection of parameters is controlled by the inclusion of a +/- symbol following
a parameter in the input deck. Examples of valid sensitivity parameter definitions
are:

MATERIAL 1
E 10e6 +/- 1e6 // absolute tolerance specified
density 2.59e-4 +/- // no tolerance, use default

END

BLOCK 1
area 0.10 +/- 5 % // relative tolerance specified

END

BLOCK 2
thickness +/- 1 % // relative to exodus attr

END

LOADS

124 2 THE SALINAS INPUT FILE

nodeset 1
force 0. 0. 1000 +/- 0 0 10 // tolerance for vector param

END

Note that the tolerances are specified on the parameters where they normally appear
in the input file. That is, these definitions do not appear in the SENSITIVITY
section.

2.28 DAMPING 125

2.28 DAMPING

This section allows input of simple global viscous damping models, using either
modal damping rates or stiffness and mass proportional damping. The various
options for the DAMPING section are shown in Table 29.

Table 29: DAMPING Section Options
Parameter Description
alpha mass proportional damping parameter (real)
beta stiffness proportional damping parameter (real)
gamma uniform modal damping rate (fraction of critical) (real)
mode individual modal damping ratio (fraction of critical)

(integer, real)
ratiofun index of function to define modal damping ratios

The damping matrix or modal damping coefficient is determined by summing contri-
butions from all damping parameters given in Table 29. For modal superposition-
based analysis, including modalfrf, modalranvib and modaltransient, all
the given parameters are defined. For direct implicit transient analysis, the modal
damping parameters apply only to modes for which eigenvalues and eigenvectors
have previously been computed. This depends on the presence of the keyword
nmodes in the solution section of the input file.

The effect of the mass and stiffness proportional parameters on modal damping
depends on the frequencies of the modes. For modal-based analysis, the damping
rate for mode i with radial frequency ωi is given as

ζi = α/(2ωi) + β · ωi/2 + Γ + mode[i] + ratiofun(i)

where the viscous damping term in the modal equilibrium equation is 2ζiωi. For
example the following damping input section could be used in a modal transient
analysis †.

DAMPING
alpha 0.001 //
beta 0.00005 // C = .001 * M + .00005 * K
gamma 0.005 // 0.5 % critical
mode 1 0.01 // 1 % of critical
mode 2 0.005 // 0.5 % critical

†Block specific proportional damping is also available. See section 2.19.2.

126 2 THE SALINAS INPUT FILE

mode 3 0.015 // 1.5 % critical
END

It produces the following damping ratios.

Mode modal damping ratio modal viscous damping term
1 0.015 + 0.001/(2ω1) + 0.00005ω1/2 0.030ω1 + 0.001 + 0.00005ω2

1

2 0.010 + 0.001/(2ω2) + 0.00005ω2/2 0.020ω2 + 0.001 + 0.00005ω2
2

3 0.020 + 0.001/(2ω3) + 0.00005ω3/2 0.040ω3 + 0.001 + 0.00005ω2
3

In direct (i.e. non-modal-based) transient analysis, the same damping input section
would produce the same damping ratios if all the modes used in the modal transient
analysis were also available for the direct transient. Conversely, if no modes were
available, the above damping input section would produce a physical damping matrix
C = 0.001M + 0.00005K.

The ratiofun keyword permits definition of modal damping terms based on a fre-
quency dependent function. The associated function definition (see section 2.23)
provides a table lookup for damping ratios. For example, consider a system with
modes at 200 and 500 Hz. The following example will establish modal damp-
ing ratios of .03 and .06 respectively. The function describes a line defined by
ratio(f) = 0.01 + 0.1/1000f .

DAMPING
ratiofun=100

END

FUNCTION 100
type=linear
data 0 0.01
data 1000 0.11

END

2.28.1 Nonlinear transient solutions with damping

Using the stiffness proportional damping parameter beta in a nltransient will gener-
ate damping terms using the tangent stiffness matrix if the element is in a nonlinear
block. Otherwise, the linear element stiffness matrix is used to accumulate damping
terms related to the parameter beta.

2.29 EXTERIOR 127

2.29 EXTERIOR

This section allows the user to specify an exterior boundary for coupled structural
acoustic simulations. Once specified, first-order non-reflecting boundary conditions
are applied on this surface. The boundary is specified with a sideset.

EXTERIOR
sideset=1

END

In the above example, sideset 1 is used to denote the exterior boundary.
Note that the sideset used to define the exterior boundary can only be attached

to acoustic elements.

2.30 NOX

This section allows input of nonlinear solver options to the NOX nonlinear solver.
Currently, only a small subset of the many options available in NOX and described
at

http://software.sandia.gov/nox
are able to be specified. These include the following:

Table 30: NOX Nonlinear Solver Options
Option Choices
nonlinear solver method trust region based*

line search based (default)
nonlinear direction method newton (default)

modified newton
steepest descent
nonlinearcg

nonlinear linesearch method full step (default)
polynomial
more thunte
backtrack
nonlinearcg

*Default options for this choice are used. Specification of direction and linesearch
methods apply only to line search based.

128 2 THE SALINAS INPUT FILE

2.31 LOCA

This section allows the user to specify continuation options to the LOCA continua-
tion package. LOCA has numerous options which are fully described at

http://software.sandia.gov/nox
and the majority of these options can be specified in this section. Here we merely
list the available options and provide a brief description of the most important ones.

The required continuation parameter keyword gives the name of the con-
tinuation parameter which is a string, possibly followed by two integers. Valid
parameter names are:

Name ID Index
lambda – –

load load ID load component (x,y,z)
moment load ID moment component (x,y,z)

element attribute element block ID attribute index

Parameter lambda is a scale factor for the total external force on the system,
i.e., r(u, λ) = p − λf and is equivalent to the load stepping parameter in NL-
Statics. Parameters load and moment represent individual applied loads or
moments. The first integer argument is the load ID, and the second is the load or
moment component (x, y, or z), both counting from zero (i.e., the first load in the
first load block would be load ID 0, and the y component would be index 1). Pa-
rameter element attribute represents an element attribute, with the ID giving
the element block ID and the index giving the index of the attribute in the element
attribute array. Currently, material properties are not fully supported, nor are pa-
rameter dependent boundary conditions. Hopefully in the future a simpler system
for specifying the continuation parameter will be implemented.

The bifurcation parameter keyword is of the same form, and is required if
the bifurcation method parameter in the LOCA block is anything other than
none.

The keyword continuation restart file provides a file name for an Exodus
file from which an initial solution can be read. After each successful step in a
continuation run, the solution components (displacements and rotations) are saved
in the output Exodus file with time-step label given by the current continuation
parameter value. One can then start a new continuation run using an initial solution
given by one of these intermediate continuation steps by supplying the previous
output file as the restart file. This is often used when looking for bifurcations in
a continuation run: one discovers a bifurcation has occurred at some intermediate

2.31 LOCA 129

Table 31: LOCA Continuation Options
Option Choices
continuation parameter See below (Required)
continuation restart file any Exodus file name (No default)
continuation restart index any positive integer (default 1)
continuation method natural

arc length (default)
initial value any real (default 0.0)
max value any real (default 1.0)
min value any real (default -1.0)
max steps any nonnegative integer (default 200)
enable arc length scaling 0,1 (default)
goal arc length parameter contribution any real between 0,1 (default 0.5)
max arc length parameter contribution any real between 0,1 (default 0.7)
initial scale factor any positive real (default 1.0)
min scale factor any positive real (default 1.0e-8)
enable tangent factor step size scaling 0,1 (default)
min tangent factor any real between 0,1 (default 0.98)
tangent factor exponent any positive real (default 1.0)
branch switch 0 (default), 1
compute eigenvalues 0 (default), 1
block size any positive integer (default 1.0)
arnoldi size any positive integer (default 100)
num eigenvalues any positive integer (default 3)
eigenvalue tolerance any positive real (default 1.0e-8)
convergence check any positive integer (default 1)
restarts any positive integer (default 2)
frequency any positive integer (default 1)
debug level any nonnegative integer (default 0)
sorting order lm (default), lr, li, sm, sr, si
save eigenvalues any positive integer (default 0)

130 2 THE SALINAS INPUT FILE

Table 32: LOCA Continuation Options Continued
Option Choices
bifurcation parameter See below (Required for Bifurcations)
eigenvector restart method solve dfdp (default)

file
eigenvector restart file any Exodus file name (No default)
eigenvector restart index any positive integer (default 1)
bifurcation method none (default)

turning point
modified turning point
nic day modified turning point
pitchfork
hopf

bifurcation parameter initial value any real (no default)
perturb initial solution 0 (default), 1
bifurcation perturbation size any positive real (default 1.0e-3)
step size control method constant

adaptive (default)
initial step size any real (default 0.1)
min step size any positive real (default 1.0e-5)
max step size any positive real (default 1.0)
aggressiveness any positive real (default 0.5)
failed step reduction factor any real between 0,1 (default 0.7)
successful step increase factor any real ¿ 1 (default 1.26)
predictor method constant predictor

tangent predictor
secant predictor (default)
random predictor

random perturbation size any positive real (default 1.0e-3)
first step predictor method same as predictor (default constant)
first step random perturbation size any positive real (default 1.0e-3)
last step predictor method same as predictor (default constant)
last step random perturbation size any positive real (default 1.0e-3)
output precision any positive integer (default 3)

2.31 LOCA 131

point along a continuation curve (e.g., the curve goes around a turning point) and
then restarts the continuation near the bifurcation and tracks the bifurcation in a
second parameter. There is no default for this keyword. The index (or time step)
into the Exodus restart file is specified with the continuation restart index
keyword and defaults to 1.

Turning point and pitchfork bifurcations require an initial guess for the null
vector (eigenvector corresponding to zero eigenvalue) of the system. How this vector
is computed is controlled by the eigenvector restart method keyword, which
currently can be either solve dfdp or file. For solve dfdp, the initial null vector
v is computed as the solution to Kv = ∂r

∂λ . If the stiffness matrix K is nearly singular,
then v will have a large component in the direction of the null vector. For file, the
initial null vector is read from an Exodus file, given by eigenvector restart file.
The index is given by eigenvector restart index and defaults to 1.

Salinas has a basic branch switching capability, and it is primarily intended for
pitchfork bifurcations. Branch switching is enabled by setting branch switch
to 1. One must then supply an approximation to the tangent vector to the new
branch. For pitchfork bifurcations, this tangent vector is equal to the null vector
at the pitchfork point, which then can be read from an Exodus file specified by the
eigenvector restart file keyword.

132 3 ELEMENTS

3 Element Library

Short descriptions of each of the types of elements follow. Most of the parameters
for the element are supplied either in the database file (i.e. Exodus file) or in the
text input file (*.inp). If parameters exist in both locations, the values specified in
the text input will over ride the exodus database specification.

3.1 Hex8

The Hex8 is a standard 8 node hexahedral element with three degrees of freedom
per node. The Hex8 element has 8 integration points. The shape functions are
trilinear. It supports isotropic and anisotropic materials.

There are three variations of Hex8. The default element is a bubble hex element,
which can be specified by Hex8b, or by no specification at all. The bubble ele-
ment still has 8 nodes and 3 degrees of freedom per node, and thus from a user’s
perspective it is no different than the standard Hex8. The Hex8b element uses
bubble functions,13,1415 to augment the standard element shape functions. It gives
much better performance in bending than does the standard hex8.

The Hex8u specifies an under integrated Hex with properties similar to those
of most commercial finite element codes. The underintegration produces an element
that is soft relative to a fully integrated element. It may be specified by Hex8 or
by Hex8u.

The fully integrated Hex is specified by Hex8F. While it performs adequately when
the element shape is nearly cubic, it performs quite poorly for larger aspect ratios.
For most problems involving bending the Hex8u is recommended.

3.2 Hex20

The 20 node variety of Hex element provides quadratic shape functions. It is a far
better element than the Hex8, and should be used if possible. The Hex20 element
in Salinas is very similar to elements found in most commercial codes.

3.3 Wedge6

The Wedge6 is a compatibility element for the Hex8, it is not recommended that
the entire mesh be built of Wedge6 elements. They are primarily intended for
applications where triangles are naturally generated in mesh generation.

3.4 Wedge15 133

3.4 Wedge15

The Wedge15 element adds midside nodes to the Wedge6. Like the Hex20 and
Tet10, it has quadratic shape functions, and is a very good element.

3.5 Tet4

This is a standard 4 node tetrahedral element with three degrees of freedom per node.
The Tet4 element has one integration point. The shape functions are linear. It is
not recommended to use only Tet4 elements for the entire mesh because standard,
linear tetrahedra are typically much too stiff for structural applications. The Tet4
is provided primarily for those applications where a mesh may be partially filled
with these elements. If a model is constructed of all tetrahedral elements (as by an
automatic mesh generator), the Tet10 is strongly recommended over the Tet4.

3.6 Tet10

This is a standard 10 node tetrahedral element with three degrees of freedom per
node. The Tet10 uses 4-point integration for the stiffness matrix and 16-point
integration for the mass matrix. The shape functions are quadratic. This is a very
good element for use in most structural analyses.

3.7 QuadT

The QuadT is a 4-node quadrilateral shell with membrane and bending stiffness.
The element properties and element stiffness and mass matrices are developed by
internally generated Tria3 elements, as illustrated in Figure 8. The quadrilateral
is split along the shortest diagonal. It is not an optimal element, but is adequate
for most applications. A more optimal element is currently under development. See
the description of the Tria3 for details on the element.

3.8 Quad8T

The Quad8T is an 8-node quadrilateral shell with membrane and bending stiffness.
The element properties and element stiffness and mass matrices are developed by
internally generated Tria3 elements (see Figure 9. It is not an optimal element,
but is adequate for most applications. Shape functions are NOT quadratic. It is
compatible with the Tria6 element, as well as with other elements based on the
Tria3. See the description of the Tria3 for details on the element.

134 3 ELEMENTS

Figure 8: QuadT Element
The element is generated by internally combining two Tria3 elements.

v v

v v

Tria3 #1

Tria3 #2

�
�

�
�

�
�

�
�

�
�

�
�

�
��

Figure 9: Quad8T Element
The element is generated by internally combining six Tria3 elements.

v v

v v

f

f f

f

�
�

�
�

�
�

��

@
@

@
@

@
@

@@

�
�

�
�

�
�

��

@
@

@
@

@
@

@@

3.9 TriaShell 135

3.9 TriaShell

The TriaShell element has 3 nodes with 6 degrees of freedom (DOF) per node.
The TriaShell is generated by decoupling the membrane DOF and the bending
DOF. Allman’s Triangular (AT) element16 models the membrane DOF, while the
Discrete Kirchoff Triangle17 (DKT) models the bending DOF. These two elements
are combined into the TriaShell element. The single layer shell supports only
isotropic materials. The TriaShell, like the Tria3, has a single required attribute,
thickness.

Additional attributes include two rotational parameters. The first is a rotation
about a given axis, and the second is a rotation about the surface normal. The
angles are specified in degrees and the axis is an integer 1, 2, or 3, representing
the x, y, and z coordinate axes. The example below illustrates the use of these
parameters.

You may also specify layers for a TriaShell element. When using layers, the
available materials are isotropic and orthotropic layer. Each layer must specify a
material, a thickness, and a fiber orientation.

Block 2
TriaShell
rotate 40 about axis 1
rotate 15 about normal
layer 1
material 1
thickness 0.01
fiber orientation 40

layer 2
material 1
thickness 0.04
fiber orientation 44

End

Note that stress output can not be written to an exodus file for shells with more
than one layer. However, layered stress values can be obtained by specifying
stress in the Echo section.

3.10 Tria3

The Tria3 is a three dimensional triangular shell with membrane and bending
stiffness. There are 6 degrees of freedom per node. In most respects it is very

136 3 ELEMENTS

similar to the TriaShell. It is the default element for triangular meshes. The
Tria3 was provided by Carlos Felippa of UC Boulder. It currently supports only
isotropic materials. It has a single required attribute, thickness, which may be
specified in either the exodus file or the text input file.

The element stiffness matrix for triangles consists of the sum of two independent
contributions from membrane and bending. These contributions may be arbitrarily
scaled using the parameters membrane factor and bending factor. Each of
these parameters default to 1.0. They must be specified in the text input file in the
block definition.

Attribute Keyword Description
1 thickness Thickness of the shell
2 offset offset for the shell

N/A membrane factor scale factor for membrane
N/A bending factor scale factor for bending

The thickness may either be entered in the Exodus file, or in the input file. If an
attribute is entered in both locations, the value in the input file will be honored.
An example element block is shown below.

Block 3
Tria3
Thickness 0.01
material 71
membrane_factor=0 // turns off membrane stiffness

End

3.11 Tria6

The Tria6 is a 6-node triangular shell with membrane and bending stiffness. The
element properties and element stiffness and mass matrices are developed by in-
ternally generated Tria3 elements (see Figure 10. It is not an optimal element,
but is adequate for most applications. Shape functions are NOT quadratic. It is
compatible with the Quad8T element, as well as with other elements based on the
Tria3. See the description of the Tria3 for details on the element.

3.12 Offset Shells

Any shell may be offset by specifying an offset. This single number is multiplied by
the element normal to arrive at an offset vector. The resulting mass and stiffness

3.13 HexShell 137

Figure 10: Tria6 Element
The element is generated by internally combining four Tria3 elements.

@
@

@
@

@
@

@
@

@
@

@
@

@
@@v v

v

f

f f

@
@

@
@

@
@

@@

properties are equivalent to the stiffness generated by translating the shell by the
offset vector, and constraining the resulting offset nodes to the untranslated nodes
using rigid links. The performance is vastly better than the constraint approach.
Note that for curved surfaces there may be modeling issues with offset elements
since there is no change in curvature with the change in radius. In the .inp file the
element offset is specified as,

offset=-3.14e-2

Offsets may also be specified in the exodus file. For shell elements these are specified
in the attributes 2. Note however, that at this time there are few tools to support
model building.

3.13 HexShell

The 8 noded hexshell is a hybrid solid/shell element. It is meshed as a standard hex
element, but the formulation of the element is similar to that of a shell. Unlike a
shell element, the thickness is determined by the mesh. But, the element is designed
to operate with many of the same features as shell elements even when it becomes
very thin. Details of the element formulation are available in a separate report (Ref.
18).

The hexshell has a preferential thickness direction which is essential to it’s correct
operation. The thickness direction may be specified in any one of three ways.†

† The element orientation may be identified in the output using the eorient keyword. See

138 3 ELEMENTS

1. Using the tcoord, it may be specified by a coordinate frame.

2. An exodus side set may be attached to one face of all the elements in a block
using the keyword sideset. The thickness direction will be defined to be the
normal to the sideset’s surface. For example, if the sideset it placed on a side
of the structure that lies on the x-y plane, then the thickness direction of the
hexshell will be defined as the z direction, since that is the normal to the x-y
plane.

3. Salinas may attempt to determine the thickness direction from the topology.
This is the default option (because it is the easiest for the user), but it is also
the least robust.

When the element thickness must be determined by the topology, the mesh must
follow these requirements. The elements in the block must form a sheet. More than
one disconnected portion of the sheet is possible, but all portions must adhere to
these requirements.

• Every element in the sheet must have at least two neighbors, e.g. the sheet
can’t be a single element. NOTE... at this time, this is true for the parallel
decomposed mesh as well. The portions of the sheets found in each subdomain
can not be a single element. We must be able to eliminate the thickness
direction of each element by it’s neighbor connectivity.

• The elements in the sheet may vary in thickness, but the sheet must be exactly
one element thick.

• The elements must be connected as a single sheet. Thus, if the sheet turns
a corner, it must do so gently. The algorithm will fail if any element in the
sheet is connected on the top or bottom to another element in the sheet.

The HexShell requires a material specification. Optional parameters include the
sideset or the coordinate frame and coordinate direction used to determine the
thickness direction. The sideset keyword must be associated with a defined sideset
in the model. The tcoord keyword requires two integer arguments. The first is
the ID of the coordinate system referenced. The second is the direction (1,2 or 3)
associated with the coordinate system.

Keyword Arguments Description
1 sideset ID sideset to specify thickness direction
2 tcoord ID and direction coordinate frame and coordinate direction

section 2.8.23.

3.14 Beam2 139

An example specification follows.

Block 88
HexShell
sideset 88
layer 1
material 1
coordinate 1
thickness .4

layer 2
material 2
coordinate 2
thickness 0.6

End

BLOCK 89
HEXSHELL
tcoord 5 1 // use coordinate frame 5, "x" direction
material 89

END

BLOCK 100
HexShell
sideset 1 // the normal to sideset 1 will be the thickness direction for block 100
material 1

END

The formulation of the HexShell supports multiple layers of orthotropic mate-
rials. Each layer has an associated material, normalized thickness and coordinate.
The coordinate is provided to permit specification of the material coordinate. The
thickness specifies the relative thickness of each layer. The total thickness is deter-
mined from the element topology, but relative thicknesses for each layer must be
specified. If only one layer is specified, then the layer keyword is not required, and
the relative thickness is irrelevant (and not required).

3.14 Beam2

This is the definition for a Beam element based on Cook’s (Ref. 7) development.
This beam is similar to the standard Nastran CBAR element. It has no shear
contribution. The Beam2 has 7 required parameters, and an optional offset vector.

140 3 ELEMENTS

old order # Keyword Description
1 1 Area Area of beam
2 5 I1 First bending moment
3 6 I2 Second bending moment
4 7 J Torsion moment

5,6,7 2,3,4 Orientation orientation vector
8,9,10 8,9,10 offset beam offset vector

No stress or strain output is available for beams. Beams are restricted to isotropic
materials. Attributes may either be entered in the Exodus file, or in the input file.
Attributes in the exodus file must be in the order specified in the table above. If
an attribute is entered in both locations, the value in the input file will be honored.
Two attribute orderings are currently supported in Salinas because of inconsistencies
in preprocessing tools. See the discussion on “OldBeam” in section 2.3.

The following section illustrates the definition of a Beam2 block.

Block 3
Beam2
Area 0.71
I1 .05
I2 5e-2
J 0.994
orientation 1.0 -1.0 0.9
material 7

End

Beams may be offset by specifying an offset vector. The resulting mass and stiffness
properties are equivalent to a the stiffness generated by translating the beam by the
offset direction, and constraining the resulting offset nodes back to the untranslated
nodes using rigid links. Note that for curved surfaces there may be modeling issues
with offset elements, since there is no change in curvature with the change in radius.
In the .inp file the offset is specified as,

offset=-3.14e-2 0.11 0.99

Offsets may also be specified in the exodus file. For beams these are specified in
the attributes 8, 9 and 10. Note however, that at this time there are few tools to
support model building.

3.15 OBeam 141

3.15 OBeam

These beams are provided by Carlos Felippa of UC Boulder. They are similar to
the simple beams of Beam2. They use identical parameters. Because of this
duplication, these beams will probably be eliminated in the future.

3.16 Truss

This is the definition for a Truss element based on Cook (Ref. 7). Trusses have
stiffness in extension only. The Truss has 1 parameter.

Keyword Description
1 Area Area of truss

No stress or strain output is available for trusses.

3.17 ConMass

Concentrated masses are used to apply a known amount of mass at a point location.
Because many meshing tools build beams as a building block for ConMass, the
geometry definition may be either a line or a point, i.e. the Exodus file element
types are BEAM, BAR, TRUSS or SPHERE. If a line-type element is used,
all the mass is associated with the first node of the element.

Parameters for the ConMass are listed below. Because of difficulties in translation
or generation of the model, the parameters found in the exodus file are not normally
used for a ConMass. This avoids the confusion generated when mass constant
defaults may have been taken from beams for example. As a result, all parameters
must be specified in the input or the analysis will fail.

This behavior can be tedious however, if many concentrated masses are found
in the model, and if the analyst is confident that the attributes are appropriate
for these elements. In this case, use the ConMassA element. It is identical to
the ConMass, but uses the default attributes from the exodus file. Typically seven
attributes would be specified there.

142 3 ELEMENTS

keyword Description
1 Mass concentrated mass
2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG

As an example element block,

Block 5
ConMass
Mass 1000.0
Ixx 1.0
Iyy 2.0
IZZ 1.5
offset 30.0 40.0 50.0

End

Note: While offsets are provided for concentrated masses, their applicability
depends on the model. In particular, an offset is meaningless if applied on a
node for which there is no rotational degree of freedom. Conceptually, we are
attaching the mass on the end of a long stiff beam. If that beam is attached
only to a solid, it is free to rotate which is a model error. Salinas eliminates
the offset in this case so the model is usable.

3.18 Spring

The Spring element provides a simple spring connection between two nodes in a
model. Note that the direction of application of the spring should be parallel to a
vector connecting the nodes of the spring. It is usually preferable to have the nodes
of the spring be coincident. Springs are defined in the exodus database using BEAM
or BAR elements.

The Spring element has three required parameters (the translational spring stiff-
nesses). Rotational parameters are supported using the RSpring element described
in section 3.19. Currently there is no way to attach off-diagonal elements, i.e. there
is no Kxy spring element. If that is required, a combination of a spring and a
multipoint constraint must be used.

3.19 RSpring 143

Springs can be defined in user defined coordinate systems.

Keyword Description
1 Kx translational spring constant in X
2 Ky translational spring constant in Y
3 Kz translational spring constant in Z

As an example element block,

Block 51
Spring
Coordinate 7
Kx 1e6
Ky 1.11E7
Kz 1000

End

3.18.1 Spring Parameter Values

It is strongly recommended that all three values of the spring constants be nonzero.
This is especially important in parallel analysis performed using domain decom-
position. Many domain decomposition tools may partition the model such that
zero spring constants lead to singular domain stiffness matrices. This is true even if
other elements may eliminate the singularity. This can cause the solver (particularly
FETI) to fail.

While setting nonzero spring stiffness helps to avoid solver problems, the un-
derlying domain decomposition problems still exist for parallel calculations. At the
time of this writing, all available domain decomposition tools have difficulty with
linear elements and particularly with springs. This invariably leads to load balance
problems, and may introduce other problems. In many cases in large models, it may
be better to replace the spring elements by solid element meshes which more accu-
rately represent the physical connection. While there are more degrees of freedom
in the calculation, the accuracy is enhanced, and domain decomposition problems
are largely eliminated.

3.19 RSpring

The RSpring element provides a simple rotational spring connection between two
nodes in a model. It is usually preferable to have the nodes of the spring be coinci-
dent. RSprings are defined in the exodus database using BEAM or BAR elements.

144 3 ELEMENTS

The RSpring element has three required parameters (the rotational spring stiff-
nesses). It is strongly recommended that all three components have some stiffness.
This is particularly important when doing parallel analysis (see the discussion in
section 3.18.1). Translational stiffness require the use of the Spring element de-
scribed in section 3.18. Currently there is no way to attach off diagonal elements, i.e.
there is no Kxy spring element. If that is required, a combination of an RSpring
and a multipoint constraint must be used.

RSprings can be defined in user defined coordinate systems. The relevant pa-
rameters are listed in the table.

Keyword Description
1 Krx rotational spring constant in X
2 Kry rotational spring constant in Y
3 Krz rotational spring constant in Z

As an example element block,

Block 52
RSpring
Coordinate 7
Krx=1e6
Kry = 1.11E7
Krz 0.1

End

3.20 Spring3 - nonlinear cubic spring

The Spring3 element provides a nonlinear spring connection between nodes in a
model. Note that the direction of application of the spring should be parallel to a
vector connecting the nodes of the spring. It is usually preferable to have the nodes
of the spring be coincident. Springs are defined in the exodus database using BEAM
or BAR elements.

The Spring3 element has nine required parameters (the translational spring stiff-
nesses). There is no way to attach off diagonal elements, i.e. there are no Kxy spring
elements. If that is required, a combination of a spring and a multipoint constraint
must be used.

The force applied by the Spring3 is defined as a cubic polynomial in each of
the coordinate directions. Thus,

Fx = Kx1 · ux + Kx2 · u2
x + Kx3 · u3

x (30)

3.21 Dashpot 145

For linear analyses, only the first term is used.
Cubic springs may be defined in user defined coordinate system.

Keyword Description
1 Kx1 translational linear spring constant in X
2 Ky1 translational linear spring constant in Y
3 Kz1 translational linear spring constant in Z
4 Kx2 translational quadratic spring constant in X
5 Ky2 translational quadratic spring constant in Y
6 Kz2 translational quadratic spring constant in Z
7 Kx3 translational cubic spring constant in X
8 Ky3 translational cubic spring constant in Y
9 Kz3 translational cubic spring constant in Z

As an example element block,

Block 51
Spring3
Coordinate 7
Kx1 1e6
Ky1 1.11E7
Kz1 0
Kx2 0
Ky2 0
Kz2 0
Kx3 1e4
Ky3 1.11E5
Kz3 0

End

3.21 Dashpot

A dashpot represents a damping term proportional to velocity. Dashpot elements
combine a viscous friction damper with a simple linear spring. The spring is included
to avoid singular stiffness matrices when dashpots are connected without springs.
Dashpots are currently only used in transient dynamic, direct frf and complex eigen
analyses. For other analyses only the spring term will be used.

The damping factor is the damping matrix entry. It has units of force·time/length.
For a single degree of freedom system with a mass=M , the following equation is sat-
isfied.

146 3 ELEMENTS

K · u + c · u̇ + M · ü = f(t) (31)

Currently dashpots are defined in the basic coordinate system only. Because
they are single degree of freedom elements, the direction must also be defined (i.e.
cid=1, 2 or 3). There are three parameters. All are required.

Keyword Description
1 K translational linear spring constant
2 c damping factor
3 cid coordinate direction (1, 2 or 3)

As an example element block,

Block 51
Dashpot
cid=1 // dashpot is in the X direction
K=1e6
c=1e5

End

Dashpots may be represented in the exodus file with any linear element. The
Truss element most closely mimics the dashpot’s single degree of freedom behavior,
and may be the best definition for domain decomposition tools.

Caution should be exercised when using dashpots (or any single degree of freedom
element). The remaining degrees of freedom must be properly accounted for, or the
system matrices will be singular. Care should also be exercised to insure that if the
nodes of the dashpot are not coincident, that the constraint force lies along the axis
of the element - failure to do this can result in models that have nonzero rotational
modes. There may also be important domain decomposition issues with dashpots.
See section 3.18 for a discussion.

3.22 Hys

The Hys element provides a simple, one dimensional approximation of a joint going
through microslip. Many simple joints can be represented by their hysteresis loop, a
curve in the displacement vs. force plane. The relevant parameters of this element
are indicated in the table, and illustrated in Figure 11.

3.23 Shys 147

Keyword Description
1 Kmax maximum slope of f vs u curve
2 Kmin minimum slope of f vs u curve
3 fmax maximum possible force
4 dmax maximum possible displacement

The fmax, dmax pair define the limits of applicability of the element. The
element will fail if the internal force exceeds fmax or the displacement exceeds
dmax. The slope of the curve at the origin is kmax. It represents the small am-
plitude response of the system. The slope at the extremum, i.e. at (dmax,kmax)
is kmin.

A Hys element uses a Beam or truss element in the exodus file. At the current
time, the element may only be defined in the X direction. An example of the salinas
input is shown below.

BLOCK 2
Hys
Kmax 4.5e+7
Kmin 3.0e6
fmax 5.92
dmax 0.9833e-6

END

3.23 Shys

A Shys is the whole joint model developed by Smallwood and is an element which
uses a Beam or truss element in the exodus file. The element is a 2.5 dimensional
element with an Shys element in both the X and Y directions and a linear spring
element in the Z direction. The Shys element is assumed identical in both the X
and Y directions in this formulation. A coordinate system can be defined to orient
the element correctly.

This element is being phased out in favor of the Joint2g element,
where similar constitutive behavior can be specified if desired.

An example of the Salinas input is shown below.

148 3 ELEMENTS

Figure 11: Hys element parameters

3.24 Iwan 149

Keyword Description
1 n Exponent describing slope of force-dissipation

curve at very small amplitudes
2 k Linear stiffness of Smallwood’s element
3 kNL Coefficient for non-linear stiffness
4 kz Linear translational stiffness in the Z direction
5 k r Linear rotational stiffness (optional, default = 0)

The Shys element does not use the attributes defined in the exodus file for
default values of the optional parameters. A detailed discussion of the theory of
the Shys element as well as how to determine the parameters can be found in the
reports by Smallwood (Ref. 19).

BLOCK 2
shys
coordinate 2
n = 1.39
k = 1.3167e6
kNL = 1.8499e6
k_z = 1.6e6
k_rot = 1.e9

END

3.24 Iwan

The Iwan model as a stand alone element has been phased out. Instead use the
Joint2G element with an Iwan constituative model.

3.25 Joint2G

The Joint2G element† was devised to facilitate the implementation of “whole joint”
models in Salinas. Beyond that it offers a workbench of considerable flexibility for
specifying the nature of adherence between surfaces.

Each Joint2G element connects a pair of nodes (or grids, hence the “G” in
Joint2G); it is a member of the geometrically one-dimensional class of elements
OneDim. It’s unique advantage is that it permits users to specify independently the
constitutive behavior of each of the degrees of freedom connecting its node pair.

The constitutive behavior is implemented through a constitutive class that pro-
vides generalized scalar forces in response to corresponding generalized displace-

†Joint2G elements are supported and documented by Dan Segalman.

150 3 ELEMENTS

ments. Though the class name is Axial, members of the class provide responses that
do not make reference to the axial or rotational nature of the deformation.

The decoupling of the constitutive response from the element machinery facili-
tates creating additional constitutive classes without having to recreate the whole
element machinery.

The Macroblock provides a complementary functionality which may be used
to specify the mechanically parallel behavior through the use of multiple, co-located
Joint2G elements. See section 2.20.

3.25.1 Specification

The meshed objects that map into the Joint2G element are defined in the exodus
database using BEAM or BAR elements. The Joint2G element does not make use of
attributes defined in the exodus file; all properties must be specified in the BLOCK
and PROPERTY cards. In the example below, properties are assigned to element
block “2”.

BLOCK 2
coordinate 5
joint2g
kx=iwan 1
ky=elastic 1.0e6
kz=elastic 1.0e6
krx=null
kry=null
krz=null

END

The above statement declares “BLOCK 2” to be of type Joint2G. It also
declares the constitutive response in the “x” direction to be that of Segalman’s 4-
parameter Iwan model (SAND2002-3828). The parameters to be used in this model
are those specified in “Property 1” defined below. In this case, the four parameters
chosen are chi, phi max, R, and S (χ, φmax, R, and S in the SANDIA report). The
Iwan properties can be specified alternatively by the parameter set chi, phi max,
F S, and beta (χ, φmax, FS , and β).

property 1
chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

3.25 Joint2G 151

END

The constitutive behavior in the “y” and “z” directions is elastic with stiffness
specified by the third argument - 1.0 x 106 in this case.

In this example, there is no specification for constitutive behavior in the three
rotational directions. The NULL specification merely means that those degrees of
freedom in the relevant nodes are are not activated (“touched”) by this element.
Because of artifacts associated with parallelization, it is recommended that if any of
the rotational degrees of freedom are active (not NULL), they all should be active.

The directions (“x”, “y”, and “z”) employed above are those associated with
the coordinate system declared for the block. In the example shown, there is an
explicit reference to coordinate system 5. If there is no such explicit reference to
a coordinate system, then the “x”, “y”, and “z” directions are those of the global
coordinate system.

3.25.2 Constitutive Behavior

4-Parameter Iwan Model (iwan): The Iwan element is a collection of spring
slider elements designed to provide a predicted model of joint behavior (including
energy loss). A detailed discussion of the theory of the Iwan element as well as how
to determine the parameters can be found in the reports by Segalman (Ref. 20).
Information about the Iwan element, and its relationship to other joint elements
may be found in the Sandia internal report by Segalman and Starr (see 21).

The schematic of the Iwan model is shown in figure 12. Parameters for the
behavior may be specified using either an older definition (Table 33), or a newer set
(Table 34). The newer parameters are described briefly below, but the analyst is
referred to the documentation for more detail.

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at very

small amplitudes
2 R Constant coefficient in distribution
3 phi max Maximum break free pseudo-force
4 S Strength of singularity in break free force distribution

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 33: Older Iwan 4-parameter model

152 3 ELEMENTS

k

x

φ

k

x

φ

k

x

φ

k

x

φ

U(t)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

1

1

n

n

K1

3

3

2

2

F(t)

u(t)

Figure 12: Iwan Constitutive Model

3.25 Joint2G 153

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at very

small amplitudes
2 beta shape parameter of force/dissipation curve
3 KT Tangent stiffness a very low loads
4 FS Maximum break free pseudo-force

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 34: Revised Iwan 4-parameter model

chi: determines the slope of the dissipation-force curve. Typically 0 < χ < −1. A
value of zero corresponds to a coulomb type loss in Mindlin solutions. A value
of χ = −1 corresponds to a viscous like (but amplitude dependent) loss with
dissipation proportional to the square of the amplitude. Dissipation follows
the relation,

Dissipation ≈ (Amplitude)χ+3

beta: determines the shape of the dissipation-force curve. Larger β (say 5), pro-
duces power law behavior over all amplitudes. Beta affects both the shape of
the hysteresis curve within microslip (Figure 13), and the abruptness of the
transition from microslip to macroslip as shown in Figure 14. 0 ≤ β < ∞.

KT: determines the slope of the force-displacement curve at low amplitudes. This
is equivalent to a spring constant, and is used as such in analyses for which
the element is treated linearly.

FS: determines the force at which the last slider gives out, and element goes entirely
into macroslip. The Iwan element is a statistical distribution of spring/slider
elements. This is a point on that distribution.

Smallwood’s Hysteresis Model (shys): D.O. Smallwood developed a three
parameter model that captures the power-law behavior of energy loss with force
amplitude. The model parameterizes the hysteresis loop determined from experi-
mental data in such a way that the power law behavior is preserved.

154 3 ELEMENTS

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

u/φmax

F(
u)

/F
S

β=0
β=1

Figure 13: Dimensionless hysteresis curves for the four-parameter Iwan model with
χ = −1/2 and two values of β.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

u/φmax

F(
u)

/F
S

β=0
β=1
β=∞

Figure 14: Dimensionless static loading curves for the four-parameter Iwan model
with χ = −1/2 and three values of β, as the model goes into macroslip.

3.25 Joint2G 155

Keyword Description
1 n Exponent describing the slope of the force dissipation curve

at small amplitudes
2 k Coefficient for the linear stiffness
3 knl Coefficient for the non-linear stiffness

A detailed discussion of the theory of the shys model as well as how to determine
the parameters can be found in reference 22.

PROPERTY 1
n = 1.39
k = 1.3167e6
knl = 1.8499e6

END

One Dimensional Gap Model (gap): The gap model attempts to represent
the behavior of a gap closure with a bilinear elastic element. For proper numerical
behavior, the stiffness of the open gap should not be more than a few orders of
magnitude less than the stiffness when the gap is closed. The Joint2G implemen-
tation of the gap model is identical to the axial behavior of NASTRANS cgap/pgap
element as well as the axial behavior of the stand alone version of the gap element
implemented in Salinas (section 3.26).

Keyword Description
1 Ku Unloaded Stiffness
2 Kl Loaded Stiffness
3 U0 Initial Gap Opening
4 F0 Preload (force at U0)

PROPERTY 1
ku = 1e5
kl = 1e6
U0 = 0.01
F0 = 200

END

Elastic Plastic Hardening Model (eplas): The eplas element is an elastic-
plastic 1-dimensional element with linear isotropic hardening. Both the plastic strain

156 3 ELEMENTS

�
�

�
�

�
�

��
�������������������

f

disp

fyield

Slope= K∗Kp

K+Kp

Slope=K

Figure 15: Eplas Model

and the hardening variable are initialized to zero. The parameters are illustrated in
Figure 3.25.2.

Keyword Description
1 k Linear Stiffness
2 kp Hardening Stiffness
3 fyield Force at Yield

PROPERTY 1
k = 1e6
kp = 1e5
fyield = 1e4

END

One Dimensional Spring-Dashpot Model (damper): A damper represents
a damping term proportional to velocity. Damper elements combine a viscous fric-
tion damper with a simple linear spring. The spring is included to avoid singular
stiffness matrices when dampers are connected without springs. Dampers are cur-
rently only used in transient dynamic, direct frf and complex eigen analyses. For

3.26 Gap 157

other analyses only the spring term will be used. The behavior of this element is
identical to dashpot.

The damping factor is the damping matrix entry. It has units of force·time/length.
For a single degree of freedom system with a mass=M , the following equation is sat-
isfied.

K · u + µ · u̇ + M · ü = f(t) (32)

Keyword Description
1 K Stiffness
2 Mu Viscous Damper Coefficient

PROPERTY 1
K = 1e6
Mu = 1e2

END

Additional Constitutive Behavior: The philosophy employed in the imple-
mentation of the Joint2G element of decoupling the constitutive behavior from
the element machinery should facilitate the implementation of other constitutive
models. Among those whose implementation is foreseen are the following:

• Bouc-Wen hysteresis model

• Preisach hysteresis model

3.26 Gap

Gap elements are modeled after the non-adaptive nastran CGAP/PGAP elements.
They are intended to provide a simple, penalty type element suitable for model-
ing simple connections. Note that these elements (like all beam-like elements) when
embedded in solid meshes can result in difficult domain decompositions, and lead
to load imbalance.

The Gap element is inherently nonlinear. In linear analysis, the element behaves
approximately like a spring with the stiffness determined by KL and a transverse
stiffness, KT. The parameters of the element are listed in the table below and shown
graphically in Figure 16.

158 3 ELEMENTS

Keyword Description
1 KU unloaded stiffness
2 KL loaded stiffness
3 KT transverse stiffness
4 U0 initial gap opening
5 F0 Preload, i.e. force at U0
6 coordinate Required coordinate frame.

The unloaded stiffness, KU, represents the stiffness of the element when the gap is
open. It must be greater than zero. The loaded stiffness, KL, represents the stiffness
when the gap is closed (as shown in the figure). The stiffness is KL when UA - UB
is greater than U0.

The initial gap opening and preload define the corner point in the force/deflection
curve as shown in Figure 16. Typically these will be zero.

A gap element provides for transverse stiffness and friction. When the gap is
closed, the transverse stiffness is KT. If the gap is open, the transverse stiffness is
reduced to KU ′ = KU ×KU/KL.

The coordinate frame is a required attribute of the gap element. The gap open
and closes along the X axis of the frame. Note that the direction of the coordinate
frame is quite important. The element determines a quantity UA − UB along
this coordinate axis. This axis may not align with the coordinate alignment of the
elements, which can lead to confusion.

The gap element is a simple penalty type element that somewhat mimics the
effect of a physical gap. Choice of the value of KL is very important to success of
the element. Good values are somewhat in the range of the neighboring element
stiffness. Too large a value can lead to matrix condition problems. Too small a
value results in excessive softness and penetration in the gap.

Because the element is nonlinear, it has a significant impact on solutions. As
described in section 2.1.17 (and the update tangent keyword), the default be-
havior for the nonlinear solver is a partial Newton iteration. This means that the
tangent stiffness matrix is not updated between iterations. Thus, if KL and KU are
quite different, the solver will be using the wrong slope in the newton loop. Many,
many iterations may be required for convergence. You may want to turn on the ’nl-
residual’ option in the echo section (see 2.7) which will put convergence information
into the results file.

An example is shown below.

BLOCK 2
GAP
KL 4.5e+7

3.26 Gap 159

KU 3.0e6
KT=1e6
f0 5.92
u0=0.9833e-6
coordinate 5

END

x compression

Fx compression

�
�
�
�
�
���

��
���

���
���

���
��

t

U0

F0

UA - UB

Slope=KU

Slope=KL

Figure 16: Gap element Force-Deflection Curve

Gap Issues. The gap element is definitely more complex than most elastic ele-
ments. Here is a partial list of “gotchas” that we have observed.

• Gaps should normally be zero length elements. Like springs, a gap that has
a physical length will not be invariant to rigid body rotation. See section
5.2.3. One approach to this would be to use a combination of beam and gap
elements.

• The gap element uses a coordinate frame to define its direction. The direction
is NOT set by the nodal coordinates.

• The direction of the gap element must correlate to the displacement difference
from UA− UB. It is very easy to get this direction reversed.

• If you set U0, you must also set F0. This element does not constrain the
force/displacement curve to go through zero. The input must do this. The
gap element may thus be used to enforce an initial displacement or force. That
may not be what you want. It can cause very slow convergence on the initial
time step.

160 3 ELEMENTS

• Significant numerical damping may be required for convergence. Closing the
gap can cause energy to be moved into higher frequencies. Without numerical
damping, this energy can multiply until the solution becomes unstable. Nu-
merical damping is best introduced by setting “rho” in the time integrator.
Values of “rho=0.2” to “rho=0.7” have worked well. It is problem dependent.

Physically closing a gap would cause some energy loss, either by microslip,
or by a small amount of local plastic deformation. Numerical damping can
dissipate this energy that is removed from the physical system by means that
are not included in the finite element model.

• This gap element may not conserve energy. This is demonstrated in Figure
17, where a mass is dropped onto a gap. A completely elastic rebound would
take the mass back to zero. Instead, it rebounds significantly above zero. This
issue comes about because of time discretization. The mass “penetrates” the
gap region too far, which stores too much energy in the element. It is then
expelled with too much velocity. The only solution with this element is to
reduce the integration step.

3.27 Gap2D

The Gap element of the previous section provides a useful construct for planar type
interactions. A common modeling issue is a bolt in an oversized hole. To model this
interaction an ellipsoidal gap element (or Gap2D) may be required.

The Gap2D element operates just like the Gap element except that the gap
could open in 2 dimensions. The gap is open provided that the element displacement
is within an ellipse defined by the major and minor axes.(

ux

U0X

)2

+
(

uy

U0Y

)2

< 1 (33)

The major and minor axes of the ellipse are defined in the x and y direction of the
required coordinate frame.

Parameters of the Gap2D element are listed below.

Keyword Description
1 KU unloaded stiffness
2 KL loaded stiffness
3 KT transverse stiffness (z direction)
4 U0X initial gap opening, major direction
5 U0Y initial gap opening, minor direction
6 coordinate Required coordinate frame.

3.27 Gap2D 161

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−6

Time

D
is

p

U0=1e−7

Figure 17: Mass bouncing off a Gap

162 3 ELEMENTS

Figure 18: Gap2D force diagram

While the gap geometry is defined as an ellipse, the stiffnesses are not. In
the open section of the element, the in-plane stiffness is KU, and is independent of
direction. Likewise, in the closed gap region, the in-plane stiffness is independent of
direction, and is defined by KL. The out of plane stiffness for this element is always
KT. Note that the transverse stiffness behavior is significantly different than that of
the standard Gap element.

The definitions above define the gradient of the force only, and for this nonlinear
force, the value of the force depends on the path chosen for integration. For this
element, we define the force as the integral along the shortest line from the origin.

In Figure 18, two possible integration paths are shown for arriving at the point
(x1, y1). In the first path, we integrate to (x1, 0) and then up to (x1, y1). The y

component of force is f
(1)
y = KL · y1. In path 2, we follow the straight line through

(xb, yb). The associated force is f
(2)
y = KU · yb + KL(y1 − yb). For this element, we

always choose the shortest line path (path 2). This insures that the force is not
history dependent.

3.28 GasDmp 163

3.28 GasDmp

The GasDmp element is a nonlinear, beam-like element that simulates the damp-
ing forces on MEMS devices due to gas pressure as MEMS beams vibrate. The ele-
ment has no stiffness, but has damping roughly proportional to velocity/L3, where
L is the distance from the beam to the substrate. The element is very experimen-
tal, and still under development. Contact Troy Skousen or Burak Ozdoganlar at
845-0427 for details.

Inputs to the GasDmp element are as follows.

Keyword Description
1 W Beam width (length units)
2 dL Considered length of beam (length)
3 mm Molecular mass of gas (mass)
4 p0 Ambient pressure of gas (pressure)
5 T Ambient temperature of gas (temperature)
6 muRef Reference viscosity (pressure * time)
7 TRef Reference temperature (temperature)
8 ww Viscous temperature exponent

Currently all of the parameters are implemented through the input file and not
through the Exodus II file. At a future date the beam width and length will be tied
to the mesh.

The theory for the development can be found in an internal Sandia draft report
available on the Sandia internal web at,
http://www.jal.sandia.gov/Salinas/external-reports/microbeam2.pdf
Most of the implementation is associated with equations 9 and 10 of this report.

3.29 MPC

Multi-Point Constraints (or MPCs) are constraint equations applied directly to
the stiffness matrix. They are not elements, and are not available from an Exodus
database. However, in many respects they look like elements, and can be thought
of as elements. Some analysis codes treat them as pseudo elements.

All MPCs describe constraint equations of the form,∑
i

Ciui = 0

where Ci is a real coefficient, and ui represents the displacement of degree of freedom
i.

164 3 ELEMENTS

Unlike many Finite Element programs, Salinas does not support user specification
of constraint and residual degrees of freedom (DOF). In serial solvers the partition
of constrained and retained degrees of freedom is performed simultaneously by gauss
elimination with full pivoting so the constrained degrees of freedom are guaranteed
to be independent. In parallel solvers (such as FETI), the constraints are specified as
lagrange multipliers which involve no such partitionings. Redundant specification of
constraint equations is handled by elimination of the redundant equations and issue
of a warning. User selection of constrained DOF in Nastran has led to significant
headaches for analysts who must insure that the constrained DOF are independent
and never specified more than once.

Each MPC is specified in the input file with a section descriptor. Note that a
separate section is required for each equation (or degree of freedom eliminated). An
optional coordinate system may be specified on the input, but must be the first
entry in the section‡. The MPC will be stored internally in the basic coordinate
system (coordinate frame 0). The input consists of a triplet listing the global ID of
the node, a degree of freedom string, and the coefficient of that degree of freedom.
The degree of free strings are x, y, z, Rx, Ry, Rz. They are case insensitive.

Keyword Description
1 coordinate optional coordinate frame with integer id
2 integer integer node number in global model

(The node number MUST USE 1 TO N ORDERING
like exodus file numbering).

3 dof string string x, y, z, Rx, Ry, or Rz
4 coefficients Real weight associated with this dof

items 2-4 may be repeated as many times as needed

In the following example, the x and y degrees of freedom in coordinate system 1 are
constrained to be equal for node 4.

MPC
coordinate 1
4 x 1.0
4 y -1.0

END

‡At this time, all the nodes in an MPC must be associated with the same coordinate system.

3.30 RROD 165

IMPORTANT

Constraints are handled in various ways by the linear solvers. In
the serial solver, the dependent degrees of freedom are eliminated
before the matrices are passed to the solver. In parallel, we use la-
grange multipliers to handle the constraints. There is currently no
user control of constraint handling methods.
Note also that there are practical differences between rigid elements
(described in the following sections) and constraint equations that are
nominally identical. For parallel solutions, we are currently using an
augmented lagrange type solution method with the rigid links. This
means that terms are added to the stiffness matrix in parallel with
the constraints. In most cases, this renders the matrices positive
definite, and greatly increases robustness and solution performance
with no penalty for accuracy. Thus, rigid links are recommended
whenever possible in parallel solutions.
Finally note that replacing rigid links with very stiff beams can be
a bad thing to do. The condition of the resulting matrices can be
severely degraded which can lead to significant loss of accuracy.

3.30 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction.
The constraints for an RROD may be conveniently stated that the dot product
of the translation and the beam axial direction for a RROD is zero. There is one
constraint equation per RROD.

The RROD is specified using beams or trusses in the Exodus database, with a
corresponding Block section in the salinas text input file. No material is required
and any number of connected or disconnected RRODs may be placed in a block.
The following is an example of the input file specification for RRODs if the Exodus
database contains beams in block id=99.

Block 99
RROD

END

166 3 ELEMENTS

3.31 RBar

An RBAR is a pseudoelement which is infinitely stiff in extension, bending and
torsion. The constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

The RBAR is specified using beams or trusses in the Exodus database, with
a corresponding Block section in the input file. No material is required and any
number of connected or disconnected RBARs may be placed in a block. The
following is an example of the input file specification for RBARs if the Exodus
database contains beams in block id=99.

Block 99
RBAR

END

RBARs can be reordered so that the number of RBARs connected to a single
node is minimized. Having a large number connected to the same node results
in a highly populated matrix and a slow computation. Therefore, reducing the
number of connections can shorten runtime. (see the reorder rbar parameter in the
PARAMETERS section 2.3).

3.32 RBE2

Salinas has no support for the Nastran RBE2 element. However, in most cases
there is little difference between the RBE2 element and a collection of RBARs.

3.33 RBE3

The RBE3 pseudo-element’s behavior is taken from Nastran’s element of the same
name. Two distinct versions of the element are available, but the older version will
be deprecated sometime in the future. Each method is each described below, with
significantly more detail found in section 2.15.3 of the theory manual . The element
is used to apply distributed forces to many nodes while not stiffening the structure
as an RBAR would. The RBE3 uses the concept of a slave node.

3.33 RBE3 167

Because all the nodes in an RBE3 are not equivalent, each RBE3 requires its own
block ID. In the Exodus file, all links connecting to a single RBE3 are defined in
a single element block. The input file then specifies that this is an RBE3 element
block, as shown in the example below. If the model requires many RBE3s, a
separate block must be specified for each.

Usage. The optional parameters for the Rbe3 pseudo-element are shown in the
table below. These parameters must be specified in the input file, not as attributes
of the exodus file.

Keyword value Description
refc string reference coordinates for slave
method new or old Constraint computation method
WT 6 reals relative weight of coordinates

refc. The REFC parameter sets the degrees of freedom to activate on the slave
node. The keyword REFC provides a text representation of the active degrees
of freedom involved in the constraints. Thus, REFC=’12’ provides 2 equations
that constrain degrees of freedom associated with X and Y translations. No
other degrees of freedom are affected. If the REFC keyword is not provided,
it defaults to REFC=’123456’, i.e. constraint relations will be provided for all
6 structural degrees of freedom on the slave node.

method. This parameter determines which formulation is used to determine the
constraint relations. By default, the new method is used in versions of Salinas
newer than 2.0. See below.

WT. The contributions of each of the coordinates of the independent nodes may
be scaled by WT. Most typically this would be used to determine the rela-
tive weight of rotational degrees of freedom on the independent nodes to the
computation of the slave node rotations. The default value is WT= 11 1 0 0 0
which means that the rotations do not contribute to the Rbe3.

Generally we recommend there be no contribution from the rotations. The
rotation of the element may then be determined solely from the translational
degrees of freedom on the independent nodes.

The parameter applies only to the new method. In the old method rotations
on the independent nodes are always ignored.

168 3 ELEMENTS

New Method Rbe3. The new formulation of the Rbe3 is based directly on the
published method from MSC nastran. Details of the method are described in section
2.15.3 of the theory manual.

Old Method Rbe3. Previous to version 2.0, a version of the RBE3 was generated
based on an ad hoc mathematical approach. This element should act like a Nastran
RBE3 for most applications, but its use is discouraged.§

Cautions in using RBE3. While a very convenient construct, the RBE3 is not
a true element, and it can introduce complexity in the solution. Following are a few
things to bear in mind in using the element.

• Very large RBE3 elements may spread across a large portion of the model. This
affects linear solvers that are typically designed to propagate error locally. As
a consequence convergence may be slow.

• Large RBE3 elements may require a lot of memory. This memory is stored on
a single processor.

• No MPC should be linked to another. Many of our solvers will fail if one MPC
type element shares nodes with another.

• Prescribed accelerations (see section 2.12.2) cannot be applied on an RBE3
or any other MPC.

• The element has no logic to determine which degrees of freedom of the inde-
pendent nodes are active. Thus, if you specify WT = 11 1 1 1 1 the element
will try to determine it’s rotation based on a combination of the translational
and rotational degrees of freedom on the independent nodes. If the rotational
degrees of freedom are inactive, they are treated as zero. This is rarely what
is wanted.

• Care must be taken to insure that only one node of the RBE3 has multiple
connections to its links. Further, all links in the RBE3 must be connected
to the slave node.

• We note that many of our trouble tickets come from Rbe3 elements.
§ These elements are not identical. In particular, RBE3 elements that have 2 or fewer dependent

nodes, or for which the dependent nodes are colinear will either not work, or not work as anticipated.
As outlined in the theory manual, the rotational degrees of freedom on the independent nodes are
ignored. Further, the old formulation will differ from the new approach if the slave node is far from
the centroid of the element.

3.34 Superelement 169

Example Rbe3. The following is an example of the input file specification for an
RBE3 if the Exodus database contains beams in block id=99.

Block 99
RBE3
refc=123456
method=new
wt=1 1 1 0 0 0

END

3.34 Superelement

Superelements have various meanings in commercial codes. Salinas does not sup-
port a full automatic superelement capability. In section 2.1.7 the procedure for
reducing an entire model to a reduced order model is outlined. Import of a such a
reduced model (or superelement) into Salinas is also supported. The superele-
ment described in this model involves import of a mass and stiffness matrix into
a full system model. This linearized approach complements a Craig-Bampton (and
other) reductions, and may be used in any type of analysis.

Limitations

• The superelement must be small enough to fit on a single processor in a parallel
run. No consideration for superelements which span processors is made.

• Nodes on the superelement interface may be shared across processors. Interior
degrees of freedom are local to a single processor.

• Output of the interface node degrees of freedom will be made in the base model
in the usual way. Output of internal superelement quantities will be made in
the superelement database file.

• No automatic data recovery is available.

• Only a single level of superelement is supported.

User Input

Each superelement must be placed a unique block, i.e. there is one superelement
per block. The following input is provided by the user.

170 3 ELEMENTS

connectivity: To provide the geometric connectivity to the model, the connectivity
must be added to the exodus file. If the superelement has the same number of
nodes as a standard element, the analyst may choose to use such an element to
provide the connectivity. This can facilitate visualization of the model. When
the model is larger, a tool is provided to directly add the superelement to the
exodus database.¶

Note that codes such as nastran input superelements by connecting to the
nodes directly. In a parallel environment, it is critical that the superelement
remain on a processor. As a consequence, the decomposition tool must have
knowledge of the superelement. It must therefore be in the finite element
database. This is also consistent with the other tools used with Salinas where
node numbers are not typically provided directly. This permits insertion of
the superelement in a part, with a subsequent node reordering from gjoin for
example.

Salinas does support an element with more nodes than required for the con-
nectivity map. Thus, a Hex-8 could be used to define the connectivity for a
superelement with 7 nodes on the interface. Obviously the connectivity map
cannot have more nodes than the element.

connectivity map: The equations for the system matrices must be associated with
the nodes and degrees of freedom in the model. The following example creates
a map for an eight degree of freedom reduced order matrix. The first column of
the map is associated with the node index in the element. The second degree
of freedom defines the coordinate direction (typically 1 to 6 for x, y, etc).

// node cid
map 0 0

0 0
1 1
1 2
1 3
2 1
2 2
2 3

In this example, the first two rows of the system matrices are associated with
internal degrees of freedom. These interior dofs are indicated by a zero for
both the node index, and the coordinate direction. Row 3 of the matrix is

¶The tool is named “mksuper”. It is part of our standard tools distribution.

3.34 Superelement 171

associated with the first node in the element connectivity, and with the x
coordinate direction. Row 8 is associated with the second node, and the z
coordinate direction.

There must be exactly as many rows in the connectivity map as there are rows
in the system mass and stiffness matrices.

If the node index is less than zero, the row of the matrix associated with that
degree of freedom will not be mapped to the system matrix. This can be used
to “clamp” a generalized degree of freedom.

The node index is NOT the node number in the exodus file. Rather
it is the index into the element connectivity. Thus, for a four node
element, the index must never exceed 4. This permits the use of
gjoin and other tools without the need to reorder these terms in the
input file.

system matrices: The system matrices must be provided in a netcdf file. Tools
will be provided to create this file, and the format of the file will be documented
with those tools. The file will contain the following.

Kr. The reduced stiffness matrix. This is required for all analysis.

Mr. Most analyses require a reduced mass matrix as well. It’s dimension
must match that of the stiffness matrix.

Cr. A reduced damping matrix may be used for some analyses. It is entirely
optional, but if present, must be of the same dimension as Kr.

A good reduced Kr for 3D analysis should have exactly 6 zero energy modes.
It must be symmetric (Salinas will try to symmetrize it). Typically Mr
would be nonsingular. Failure to meet these requirements can confuse the
entire solution procedure, and lead to erroneous solutions.

transfer matrices: Output of results on interior points in the superelement are
facilitated using optional output transfer matrices (OTM). These are described
in some detail in the section on model reduction (2.1.7). These matrices are
used only if superelement output is requested in the output specification. The
following matrices apply.

OTM Nodal output transfer matrix.

OTME Element output transfer matrix.

OutMap An optional node map for the OTM.

172 3 ELEMENTS

OutElemMap An optional element number map for OTME.

output specifications: Output from superelements may be requested in the “ECHO”
or the “OUTPUT” sections. If requested in the “OUTPUT” section, then a
new exodus file will be generated based on the information and name of the
netcdf file. The number of nodes in the new file is the sum of the number of
nodes on the interface and the number of nodes in the output transfer matrix,
OTM. The number of elements is the number of elements in the OTME. All
elements will be placed in a single element block. For either the echo or the
output sections, output of superelement data is specified by the superele-
ment keyword.

Because we don’t know the connectivity of the elements in the OTME, all
such elements will be defined as sphere elements, and will be collocated on a
single node in the model. This makes visualization pretty much useless, but
the element data is preserved for other types of post processing.

Likewise, no coordinate information is available for the interior nodes of the
model. These elements will be located at the origin of the system.

Parameters

The parameters for the superelement block are listed in the table.

Keyword value Description
map ints table of node/cid pairs
file string netcdf file containing matrices
savememory yes or no controls storage of matrices

in memory
diagnostic int 0 = run no diagnostics

1 = compute Kr * RBM
2 = compute eig(Kr,Mr)

Block Example

The above parameters are entered in the block section of the input file. For exam-
ple,

BLOCK 10
superelement
file=’example.cdf’
// node cid

3.35 Dead 173

map 0 0
0 0
1 1
1 2
1 3
2 1
2 2
2 3

diagnostic=1
END

3.35 Dead

A dead element has no mass and no stiffness. It may be of any dimensionality,
solid, planar, line or point. Interior nodes to a block of Dead elements will not
be included in the computation of the model. There are no parameters for Dead
elements.

174 4 STRESS/STRAIN RECOVERY

4 Stress/Strain Recovery

Stresses and strains are recovered at the centroids of the finite elements using stan-
dard finite element procedures. Stress and strain recovery is not implemented for
1-D elements. The stresses/strains calculated for shell elements are calculated in
element space and not global space.

4.1 Stress/Strain Truth Table

The exodus data format provides an element truth table. Element variables are
defined globally (for all element blocks), but output data is stored only for those
blocks that have entries in the truth table. Thus, in Salinas if stress output is
requested (see section 2.8.10), then stress variables are defined for solids and shells.†

Space is allocated in the output exodus file, and data is written only if it is applicable.
Table 35 illustrates this for stresses. A similar table can be generated for strains.
Note that volume stresses always start with “V” and surface stresses start with “S”.
Note that “vonmises” is the only entry that applies to both solids and shells.

4.2 Solid Element Stress/Strain

If stresses are requested, solid elements will output the values of stress at the element
centroid.‡ The values reported are the engineering stresses in the globabl coordinate
frame. That is,

σij =
∑
k,l

Dijklεkl (34)

Where Dijkl is the material tangent modulus tensor, and

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Here u and x are the displacement and coordinates in the basic coordinate frame.

4.3 Shell Element Stress/Strain

Shell elements introduce two complexities to stress/strain recovery. First, it is often
important to recover data from the virtual surfaces of the elements (where the
stresses are highest). This requires data recovery at the top, midplane and bottom

† The variables are defined for solids and shells even if only one or the other occurs in the model
‡ There is little point in reporting stresses elsewhere in the element as none of the post processing

tools currently available properly manage stresses except at the centroids.

4.3 Shell Element Stress/Strain 175

Table 35: Element Stress Truth Table
Variable Element
Name Solid Shell Beam

SStressX1 σtop
xx

SStressY1 σtop
yy

SStressXY1 τ top
xy

SvonMises1 σtop
vm

SStressX2 σmid
xx

SStressY2 σmid
yy

SStressXY2 τmid
xy

SvonMises2 σmid
vm

SStressX3 σbottom
xx

SStressY3 σbottom
yy

SStressXY3 τ bottom
xy

SvonMises3 σbottom
vm

VStressX σxx

VStressY σyy

VStressZ σzz

VStressYZ σyz

VStressXZ σxz

VStressXY σxy

VonMises σvm max(σvm)
ElemForce forces

176 4 STRESS/STRAIN RECOVERY

surfaces. Second, there are no stresses or strains normal to the surface. Thus,
stresses are naturally reported in the surface of the element. This can also introduce
confusion about the inplane coordinate frames. As shown in Figure 19, the stresses
and strains are recovered in the physical space x1, x2 coordinate frame, which has
been mapped from the η1, η2 frame in element space. Note that the direction of
the x1 vector depends on the ordering of the mesh, and may vary from element to
element in the same surface mesh. The element orientation vectors can be obtained
with the eorient keyword described in section 2.8.23. The von mises stress, will of
course be independent of the element orientation vectors (as it is an invariant).

The TriaShell stress recovery is described here. The TriaShell is a shell
element created by combining Allman’s triangle16 and the DKT element.17 The
stress vector for the element is ~σ = (σx, σy, σxy)T . This can be further broken down
as:

~σ = ~σat + ~σdkt (35)

where ~σat is the stress vector for Allmans’s triangle and ~σdkt is the stress vector
for the DKT element. Since Allman’s triangle represents the membrane d.o.f., i.e.,
(u, v, θz), the stresses through the three surfaces of the shell element are the same.
Therefore,

~σat = [D]{ε} (36)

where {ε} is the strain vector, and [D] is the elasticity matrix for Allman’s triangle.
For the DKT element,

~σdkt = z[D]{κ} (37)

where z is the coordinate direction normal to the element, with z = 0 representing
the mid-plane, [D] is the elasticity matrix for the DKT element, and

{κ} =

 βx,x

βy,y

βx,y + βy,x

 (38)

where βx and βy are rotations of the normal to the undeformed middle surface in
the x-z and y-z planes, respectively (assuming the element lies in the x-y plane).
~σdkt does vary with the thickness of the element. Note, the above stress equations
are written with respect to a local element coordinate system as shown in Figure
19.

Combining the stress vectors from Allman’s triangle and the DKT element above
yields the stress vector for the element which is output in the local element frame.

For composite elements (such as QuadT, Quad8T and Tria6), the stresses are
computed from the underlying Tria3 element and then transformed to the element
orientation of the composite element. For the quad elements, the stress of the two
central triangles is averaged. Figures 8, 9 and 10 describe these composite elements.

4.4 Line Element Stress/Strain 177

Figure 19: Tria3 Stress Recovery. Stresses are output in the orthogonal x1, x2

coordinate frame in physical space, which has been mapped from the η1, η2 frame
in element space.

H
HHH

HHH
HHH

HHH
HHv v

v
����������������������

�
�

�
�

�
�

��

f

ff

B
B

B
B

B
B

B
B

B
B
B

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

-
η1

6

η2

�������1

x1

B
B

B
BBM

x2

element
triangle

physical
triangle

4.4 Line Element Stress/Strain

Reporting stresses for line type elements (Beams, Rods, Springs, etc) is even more
problematic than it is for shells. For many of these elements an axial stress could be
reported. But, for beam elements that stress could not include the effects of beam
bending unless details of the beam cross section were available. For some elements
(such as a spring) no concept of stress is even correct. As a consequence, we do not
report stresses for line type elements. Some recovery may be obtained using the
element force output (see section 2.8.20).

178 5 TROUBLESHOOTING

5 Troubleshooting

A variety of issues can cause an analysis to fail. Clearly, there are still bugs in the
Salinas software, and these will continue to be found. However, most problems are
identified with problems in the model or other input to the software. This section
may help to identify these issues with the goal of completing the analysis properly.
Typically the fastest resolution to a problem is to try to eliminate the modeling
issues, and only then treat the problem as a potential bug.

Users can troubleshoot Salinas issues through stand-alone tools or using Sali-
nas capabilities. The following sections will describe some of the ways this may be
done. The first part describes the stand-alone tools . The second part describes the
ways of using Salinas capabilities to troubleshoot problems or issues.

5.1 Stand-Alone Tools

Currently, two tools exist which can help the user debug their mesh file, i.e., Exodus
file: Grope and Verde.

5.1.1 Grope

Grope is an ACCESS/SEACAS utility that can be used to interrogate the Exodus
file. One of the commands in Grope that can be used is check. It is used as follows:

prompt> grope cube.exo
.
.
GROPE> check

Database check is completed

GROPE>

If there are any warning or errors, they will appear before the Database check is
completed message.

5.1.2 Verde

The Cubit team has developed a GUI-based tool named Verde. Verde can be
used to look at various mesh quality parameters of the Exodus file. For questions
about Verde, please contact the Cubit team at cubit-dev@sandia.gov.

5.2 Using Salinas To Troubleshoot 179

5.2 Using Salinas To Troubleshoot

When running Salinas on a parallel platform, new users will most likely face issues
they are not accustomed to. One of the issues will be in choosing the correct FETI
section parameters. Section 5.3 can help the user identify and troubleshoot the
FETI parameters.

The user has to take additional steps before executing the parallel version of
Salinas. One of the steps is to run nem slice or yada to decompose the finite
element model. This will produce a load balancing file with a “.nem” extension. Us-
ing the Exodus file and the load balancing file, the next step is to run nem spread
to create the partitioned files on the parallel platform where Salinas will be exe-
cuted. Finally, the commands needed to run Salinas on the parallel platform need
to be learned so that execution of Salinas can begin. Many of these steps can
cause frustration to the user, but problems with any of these steps are often easily
addressed.

The FETI solver is one of the most advanced solvers in the world, but it also
is sensitive to the decompositions created. Therefore, a model that might appear
to be working in serial can fail in parallel due to decomposition issues. Sometimes,
the problem can be the model itself, e.g., a model that hasn’t been properly equiv-
alenced.

Salinas developers have added various capabilities into Salinas to help trou-
bleshoot various issues.

5.2.1 Using The Node List File For Debugging Subdomains With ZEMs

The node list file option is very useful in debugging subdomains that have ZEMs
(or RBMs)§. To use this feature for debugging,

1. Make sure prt debug 3 is set in the FETI section. This will produce a
corner.data file.

2. The “corner.data” file has the following format:

NumCorners
global_id local_id subdomain_id x_coord y_coord z_coord
.
.

3. Use awk (or similar utility) to obtain the local ids of the subdomain from
corner.data

§Zero Energy or Rigid Body modes

180 5 TROUBLESHOOTING

4. Make sure to add an offset of 1 to the local ids. Put these ids in a file, e.g.,
sub.corners.

5. Change the Boundary section of the Salinas input file to include node list file:

Boundary
node_list_file="sub.corners"

fixed
End

6. Change the geometry file to point to the subdomain being investigated.

7. Run serial Salinas using the parallel input file

This will help in debugging subdomains that are problematic.

5.2.2 Identifying Problematic Subdomains

Sometimes it is very difficult to identify subdomains that might be problematic.
When running an eigen solution (in parallel), a shift is usually specified. Though
the shift helps obtain solutions when global rigid body modes exist, this shift can
also hide problematic subdomains. This issue also arises when running transient
analysis. If a problematic subdomain is suspected, try an eigen analysis with a shift
of zero. This will help identify subdomains with ZEMs. If ZEMs are discovered,
then section 5.2.1 can help evaluate the source of the ZEMs on that subdomain
using a serial version of Salinas.

Sometimes bad subdomains can exist if the global model is not well connected.
It is possible to use yada to try and create a one processor decomposition of
the global Exodus file. If yada finds what appears to be disconnected pieces, it
will add one processor for each disconnect piece. Once execution is complete, the
color domains utility can be used to create an Exodus file for visualization that
will have the processor id as an element variable. Or, simply run nem spread on
the new decomposition and visualize each subdomain individually.

5.2.3 Problematic Elements and Connectivity

Many problems are caused by “bad” elements. Following are a few issues that come
up periodically.

Rotational Invariance can be lost for certain elements such as springs if they are
not of zero length. The spring shown in Figure 20 is invariant to rotation
about the x axis, but not invariant to rotation about y or z. If we consider an

5.2 Using Salinas To Troubleshoot 181

undeformed rotation about the center of the beam along the z axis we would
find that uy(1) < 0 and uy(2) = −uy(1). If the spring has KY 6= 0, then this
undeformed rotation actually results in strain energy, E = 2KY u2

y. Thus, the
rigid body rotation is no longer a zero energy mode.

This is important for a variety of line type elements including spring, joint2g
and gap elements.

Figure 20: Single Spring element

x

y v v1 2

Bad element shape is a major source of problems. For example, we have exam-
ined models that have “triangles” where one side is 1/200th the length of the
other sides. This produces extremely poor element matrices. In some cases
this can destroy the condition of the entire system. Such elements can some-
times be found using the kdiag output option described in section 2.8.27.

Decomposition weakness is an issue for trusses (or rods) and some other ele-
ments. The truss in the top part of Figure 21 is self sustaining when made of
truss elements. However, because truss elements have no rotational stiffness,
the decomposed model in the lower part of the figure contains mechanisms.
Note that there is no way to decompose the model without introducing such
mechanisms.

This does not mean that truss elements must not be used in Salinas . There
are times when they are the correct element to use. However, extreme care
must be taken in their decomposition, and occasionally extra “corner nodes”
may be needed to avoid mechanisms (see section 2.4.1).

Poor Connectivity A structure that has poorly connected regions can be very
difficult to analyze. If elements have not been properly equivalenced, there
can be thousands of zero energy modes in the model. Salinas is fairly good
at identifying up to a few dozen redundant modes in the best of cases.

182 5 TROUBLESHOOTING

Figure 21: Truss Decomposition Issues

s c c
s c c
@

@
@
@

@
@

@
@

complete truss

s c
s c
@

@
@
@ c c

c c
@

@
@
@

decomposed model

5.3 Troubleshooting FETI Issues

5.3.1 Introduction

The Finite Element Tearing and Interconnecting (FETI) solver achieves unprece-
dented speed and scalability on massively parallel computers. However, it is sig-
nificantly more complex than a standard direct solver. We discuss a number of
the options associated with the solver in the following sections. These options are
required to achieve three sometimes-competing goals.

1. Insuring that there is sufficient memory to run on the MP platform.

2. Obtaining the current solution through correct rigid body (or zero energy)
identification on the subdomain and on the coarse grid.

3. Tuning the solver to maximize performance.

5.3.2 Standard FETI Block

The default entries for the FETI block are shown below.

FETI
rbm geometric
preconditioner dirichlet
corner_algorithm 1
corner_dimensionality 6
corner_augmentation none
max_iter 200
orthog 1000
solver_tol 1e-6

5.3 Troubleshooting FETI Issues 183

grbm_tol 1e-6
coarse_solver sparse
local_solver sparse
precondition_solver sparse
prt_summary yes
prt_rbm yes
prt_debug 2

END

5.3.3 Memory

The FETI options that directly affect memory usage are listed in the following
table. Memory is directly related to the “size” of a subdomain. The number of
elements associated with a subdomain can approximately measure the “size”. The
topology or connectivity of those elements also directly affects the memory since
this determines the local sparse matrix structure.

Large memory allocations occur in the following order with the relative im-
portance listed in parentheses. These operations are only done once for linear
static/dynamic and eigen analysis in Salinas.

1. Preconditioner (3)
2. Local Solver (2)
3. Coarse Grid (1)
4. Orthog vectors (4)

Preconditioner The lumped preconditioner requires less memory but generally
does more iterations than the dirichlet preconditioner which requires more memory.
The precondition solver option only affects the memory if the Dirichlet precon-
ditioner is selected. Then the comments in the Local Solver section also apply.

Local Solver The skyline solver typically takes more memory than the sparse
solver. For small problems (less than 1000 equations), the skyline solver may require
less memory than the sparse solver. Generally the skyline solver is the more robust
option particularly when the solution may be singular (i.e. eigenvalue analysis on a
floating structure).

Coarse Solver The corner algorithm, corner dimensionality, corner augmenta-
tion, and coarse solver options affect the coarse grid memory requirements. The
number of equations in the coarse grid can be found in the solution.data file. Re-
ducing the number of equations in the coarse grid reduces the memory required by
the coarse grid.

184 5 TROUBLESHOOTING

If your model has shell elements, then corner dimensionality 6 results in more
memory than corner dimensionality 3. If your model does not have shells, then this
option will not affect memory. Corner dimensionality 6 is generally required for
good performance on shell models.

Corner algorithm memory requirements are model dependent and are directly
related to the interface topology of the decomposed global model. Typically, corner
algorithm 0 results in the smallest coarse grids. This is also the least robust corner
algorithm. Corner algorithm 3 is the most conservative corner algorithm and typi-
cally generates larger coarse grids. It is recommended to start with corner algorithm
1. If problems arise, change to corner algorithm 3.

Both the skyline and sparse coarse grid solvers are redundantly stored on every
processor. The same comments about the skyline and sparse solvers found in the
Local Solver section apply here too. The parallel sparse (psparse) solver distributes
the coarse grid memory among Ns coarse solver processors. Very large coarse grids
can be used with this option. If there are any problems found with the parallel
sparse solver, please contact me at khpiers@sandia.gov.

Orthogonalization (Ortho) Vectors The number of ortho vectors directly af-
fects the memory requirements of FETI-DP. Generally, you want to select as many
ortho vectors as possible given the memory limitations. Ortho vectors decrease the
number of iterations required for successive right hand side vectors (eigen/dynamic
analysis).

Options that Affect Memory

FETI
preconditioner [lumped/dirichlet]
precondition_solver [skyline/sparse]
orthog 200
local_solver [skyline/sparse]
coarse_solver [skyline/sparse/psparse]
corner_dimensionality [3/6]
corner_algorithm [0,1,2,3,4]
corner_augmentation [none/subdomain/edge]

END

5.3.4 Local Rigid Body Modes

Local rigid body modes (RBMs) refer to the local subdomain stiffness matrix having
singularities found during the LDLT factorization and in general the solution will

5.3 Troubleshooting FETI Issues 185

be corrupted if local RBMs are found. The command “prt rbm yes” in the FETI
block will print the number of local RBMs found for each subdomain in your model.
Each subdomain is expected to have zero local RBMs. The following steps can be
taken if you find a subdomain with a non-zero number of local RBMs.

1. Reduce the tolerance used in the LDLT factorization, For example, the default
value for “rbm tol mech” is 1.0E-08, then try “rbm tol mech 1.0E-12”

2. If this does not remove the local RBMs, then try changing the corner algorithm
while holding the previously set tolerance constant. The recommended and
default algorithm is 1. If corner algorithm 1 fails to remove the local RBMs,
then try corner algorithm 3.

3. If you have shell elements in the model (and more specifically in the subdomain
you have found local RBMs), then “corner dimensionality 6” may be required.

4. For more detailed debugging of RBMs (or ZEMs) for specific subdomains, see
section 5.2.1.

5. If you still have local RBMs, contact me at khpiers@sandia.gov and I’ll be
happy to look at your specific problem.

5.3.5 Global Rigid Body Modes

Global rigid body modes (RBMs) refer to the global stiffness matrix having singu-
larities present. Finding 6 RBMs for a 3D model is expected when performing an
eigen analysis with Salinas and the global model does not have any prescribed dis-
placement boundary conditions. FETI-DP can handle this case, but in many cases
tolerances have to be adjusted for a particular model.

Finding the incorrect number of RBMs can lead to either stagnation in the
FETI solution or the dreaded “relative residual greater than 1” error in Salinas.
Troubleshooting this problem can be done in the following fashion.

1. First, determine the expected number of RBMs in your model. Typically in
eigen analysis, this is zero (fully constrained), three (2D-floating), or six (3D-
floating). The number of RBMs is expected to be zero for transient dynamics.

2. Next, determine how many you are finding with the FETI parameters you
have selected. The number of global RBMs are printed to the screen during
a Salinas run and printed to the solution.data file. Executing the following
UNIX command will find the number of global RBMs found during the last
Salinas run. grep “Global RBM” solution.data

186 5 TROUBLESHOOTING

3. The parameter “grbm tol 1.0E-06” will have to be adjusted to find the ex-
pected number of RBMs in your model.

4. Decrease grbm tol if you want to find less global RBMs.

5. Increase grbm tol if you want to find more global RBMs.

6. For eigen analysis, you may want to use a negative shift (in the Salinas SOLU-
TION block). Use a shift value equal to the negative of the first anticipated
flexible eigenvalue, i.e. (2πf)2. This should eliminate all global RBMs, but
may slow the solution.

7. If you still have problems with global RBMs, please contact Kendall Pierson
at khpiers@sandia.gov, and I will be happy to help resolve the problem.

187

6 Acknowledgments

Salinas is a success based on work by many individuals and teams. These include
the following.

1. The ASCI program at the DOE which funded its development.

2. Line managers at Sandia Labs who supported this effort. Special recognition
is extended to David Martinez who helped establish the effort.

3. Charbel Farhat and the University of Colorado at Boulder. They have pro-
vided incredible support in the area of finite elements, and especially in devel-
opment of FETI.

4. Carlos Felippa of U. Colorado at Boulder. His consultation has been invalu-
able, and includes the summer of 2001 where he visited at Sandia and devel-
oped the HexShell element for us.

5. Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is
used extensively for eigen analysis.

6. Esmond Ng who wrote sparspak for us. This sparse solver package is respon-
sible for much of the performance in Salinas and in FETI.

7. The metis team at the university of Minnesota. Metis is an important part of
the graph partitioning schemes used by several of our linear solvers. These are
copyright 1997 from the University of Minnesota. Documentation is available
at http://www-users.cs.umn.edu/~karypis/metis/metis/index.html.

8. Padma Raghaven for development of a parallel direct solver that is a part of
the FETI solver.

9. The developers of the SuperLU package. This is used in a variety of areas,
including a sparse direct complex solver. More information can be obtained
at, http://www.nersc.gov/~xiaoye/SuperLU.

188 REFERENCES

References

[1] Schoof, L. A. and Yarberry, V. R., “EXODUS II: A Finite Element Data
Model,” Tech. Rep. SAND92-2137, Sandia National Laboratories, 1994.

[2] Johnson, C. D., Kienholz, D. A., and Rogers, L. C., “FINITE ELEMENT PRE-
DICTION OF DAMPING IN BEAMS WITH CONSTRAINED VISCOELAS-
TIC LAYERS,” AIAA Journal , vol. 20, no. 9, 1982, pp. 1284–1290.

[3] Reese, G., Field, R., and Segalman, D. J., “A Tutorial on Design Analysis Using
von Mises Stress in Random Vibration Environments,” Shock and Vibration.
Digest , vol. 32, no. 6, 2000.

[4] Farhat, C., Crivelli, and Géradin, M., “Implicit time integration of a class of
constrained hybrid formulations - Part I: Spectral stability theory,” Interna-
tional Journal for Numerical Methods in Engineering , vol. 41, 1998, pp. 675–
696.

[5] Chung, J. and Hulbert, G., “A Time Integration Algorithm for Structural Dy-
namics with Improved Numerical Dissipation: The Generalized alpha method,”
Journal of Applied Mechanics, vol. 60, pp. 371–375.

[6] Farhat, C. and Roux, F.-X., “A Method of Finite Element Tearing and In-
terconnecting and Its Parallel Solution Algorithm,” International Journal for
Numerical Methods in Engineering , vol. 32, 1991, pp. 1205–1227.

[7] Cook, R. D. and D. S. Malkaus, M. E. P., Concepts and Applications of Finite
Element Analysis, John Wiley & Sons, third edn., 1989.

[8] Knupp, P. M., “Achieving Finite Element Mesh Quality Via Optimization of
the Jacobian Matrix Norm and Associated Quantities : Part II - A Framework
for Volume Mesh Optimization and the Condition Number of the Jacobian
Matrix,” Tech. Rep. SAND99-0709J, Sandia National Laboratories, 1998.

[9] Aklonis, J. L. and MacKnight, W. L., Introduction to Polymer Viscoelasticity ,
Wiley, 1983.

[10] Ferry, J. D., Viscoelastic Properties of Polymers, Wiley, 1980.

[11] Hamilton, M. F. and D. T. Blackstock, E., Nonlinear Acoustics, Academic
Press, 1998.

[12] Carroll, S. K., Drake, R. R., Hensinger, D. H., Luchini, C. B., Petney, S. J. V.,
Robbins, J. H., Robinson, A. C., Summers, R. M., Voth, T. E., Wong, M. K. W.,

REFERENCES 189

Brunner, T. A., Garasi, C. J., Haill, T. A., and Mehlhorn, T. A., “ALEGRA:
Version 4.6,” Tech. Rep. SAND2004-6541, Sandia National Laboratories, 2004.

[13] Taylor, R. L., Beresford, P. J., and Wilson, E. L., “A Non-conforming Element
for Stress Analysis,” International Journal for Numerical Methods in Engineer-
ing , vol. 10, 1976, pp. 1211–1219.

[14] Ibrahimbegovic, A. and Wilson, E. L., “A Modified Method of Incompatible
Modes,” Communications in Applied Numerical Methods, vol. 7, 1991, pp. 187–
194.

[15] MacNeal, R. H., Finite Elements: Their Design and Performance, Marcel
Dekker, 1994.

[16] Allman, D. J., “A Compatible Triangular Element Including Vertex Rotations
for Plane Elasticity Problems,” Computers and Structures, vol. 19, no. 1-2,
1996, pp. 1–8.

[17] Batoz, J.-L., Bathe, K.-J., and Ho, L.-W., “A Study of Three-Node Triangu-
lar Plate Bending Elements,” International Journal for Numerical Methods in
Engineering , vol. 15, 1980, pp. 1771–1812.

[18] Felippa, C. A., “The SS8 Solid-Shell Element: Formulation and a Mathematica
Implementation,” Tech. Rep. CU-CAS-02-03, Univ. Colo. at Boulder, 2002.

[19] Smallwood, D. O., Gregory, D. L., and Coleman, R. G., “A three parameter
constitutive model for a joint which exhibits a power law relationship between
energy loss and relative displacement,” in Shock and Vibration Symposium,
Destin, FL, 2001.

[20] Segalman, D. J., “An Initial Overview of Iwan Modeling for Mechanical Joints,”
Tech. Rep. SAND2001-0811, Sandia National Laboratories, 2001.

[21] Segalman, D. J. and Starr, M. J., “Relationships Among Certain Joint Con-
stitutuve Models,” Tech. Rep. SAND2004-4321, Sandia National Laboratories,
2004.

[22] Smallwood, D. O., Gregory, D. L., and Coleman, R. G., “A three parameter
constitutive model for a joint which exhibits a power law relationship between
energy loss and relative displacement,” Tech. Rep. SAND2001-1758C, Sandia
National Laboratories, November 2001.

190 REFERENCES

191

A Salinas Example Input Files

The following sections give examples of Salinas input files. Note, case sensitivity of
the keywords is ignored unless in quotes. The exception is the #include command,
where the filename following the command must not be in quotes, but case sensitivity
is preserved.

A.1 An Eigenanalysis Input File

The following input file will output the first four mode shapes to an Exodus output
file name hexplate-out.exo. A results file, hexplate.rslt, will not be created since no
results have been selected for output in the ECHO section.

SOLUTION
eigen
nmodes 4
title ’Obtain First Four Mode Shapes For Hexplate’

END

// The f.e.m. is in hexplate.exo
FILE

geometry_file ’hexplate.exo’
END

BOUNDARY
nodeset 77

fixed
END

LOADS // loads are unnecessary for eigenanalysis
END

// Only deformations will be output
OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain

192 A SALINAS EXAMPLE INPUT FILES

END

// No results are output to the text log file, *.rslt
ECHO
// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
none
END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default hex is an underintegraged hex.
BLOCK 44

material 3
hex8

END

MATERIAL 3
name "steel"
E 30e6
nu .3
density 0.288

END

A.2 An Anisotropic Material Input File 193

A.2 An Anisotropic Material Input File

The following input file is an example of a hexahedral mesh with anisotropic prop-
erties.

SOLUTION
eigen
title ’Example of anisotropic format’

END

FILE
geometry_file ’anisogump.exo’

END

boundary
nodeset 4 y = 0
nodeset 5 x = 0
nodeset 6 z = 0

end

loads
// sum of forces on surface should be equal to area
// imposed forces are additive
nodeset 1 force = 0.0 0.083333 0.0
nodeset 2 force = 0.0 -0.041666 0.0
nodeset 3 force = 0.0 -0.020833 0.0

end

OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain
END

ECHO

194 A SALINAS EXAMPLE INPUT FILES

// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
none
END

// the following element block is all hex
BLOCK 1

hex8
material 1

END

MATERIAL 1
name "anisotropic gump"
anisotropic
Cij
1.346 0.5769 0.5769 0 0 0

1.346 0.5769 0 0 0
1.346 0 0 0

0.3846 0 0
0.3846 0

0.3846
density 1

END

A.3 A Multi-material Input File 195

A.3 A Multi-material Input File

The next example shows the input for an Exodus model with many element blocks
and materials. Keyword lumped in the SOLUTION section causes Salinas to
use a lumped mass matrix instead of a consistent mass matrix.

SOLUTION
eigen
nmodes 1
titile ’Multiple block, multiple material example’
lumped

END

FILE
geometry_file ’multi.exo’

END

BOUNDARY
nodeset 1
fixed
nodeset 3
x = 0
y = 0
z = 0
RotY = 0
RotZ = 0

END

OUTPUTS // output only displacements to exodus file
deform

END

ECHO
none

END

// element block specifications. One such definition per element
// block in the exodus (genesis) database.
BLOCK 1

196 A SALINAS EXAMPLE INPUT FILES

material 2
Beam2

END

BLOCK 101
integration full
wedge6
MATERIAL 1

END

BLOCK 2
material 2

END

BLOCK 102
integration full
wedge6
MATERIAL 2

END

BLOCK 3
material 3

END

BLOCK 103
integration full
wedge6
MATERIAL 3

END

BLOCK 4
material 4

END

BLOCK 104
integration full
wedge6
MATERIAL 4

END

A.3 A Multi-material Input File 197

BLOCK 5
material 5

END

BLOCK 105
wedge6
integration full
MATERIAL 5

END

BLOCK 6
material 6

END

BLOCK 106
wedge6
integration full
MATERIAL 6

END

// material specifications. Extra materials are acceptable, but
// every material referenced in a necessary "Block" definition,
// must be included here.
MATERIAL 1

name "Phenolic"
E 10.5E5
nu .3
density 129.5e-6

END

Material 2
name ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6

END

Material 3
name ’foam’

198 A SALINAS EXAMPLE INPUT FILES

E 100.
nu 0.3
density 18.13e-6

END

Material 4
name ’HE’
E 5E5
nu 0.45
density 129.5e-6

END

material 5
name ’Uranium’
E 30e6
nu 0.3
density 1768.97e-6

end

material 6
name ’wood’
E 200.e3
nu .3
density 77.7e-6

end

A.4 A Modaltransient Input File 199

A.4 A Modaltransient Input File

The next example shows the input for a modaltransient analysis. Accelerations
are output to an Exodus file bar-out.exo. This example has damping, polynomial
and linear functions. Also, sensitivities are calculated.

SOLUTION
modaltransient
nmodes 10
time_step .000005
nsteps 100
nskip 1
title ’Test modal transient on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1
fixed

END

DAMPING
gamma 0.001

END

BLOCK 1
material 1

END

200 A SALINAS EXAMPLE INPUT FILES

MATERIAL 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

END

LOADS
nodeset 3

force = 1. 1. 1.
function = 3

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 0.0001 1.0
data 0.0001 0.0
data 1.0 0.0

END

SENSITIVITY
vectors all

END

A.5 A Modalfrf Input File 201

A.5 A Modalfrf Input File

The next example shows the input for a modalfrf analysis. Accelerations are
output to an Exodus file bar-out.frq.

SOLUTION
modalfrf
nmodes 10
title ’Test modalfrf on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

frequency
freq_min 0
freq_step=10
freq_max=3000
nodeset 3
disp

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1
fixed

END

DAMPING
gamma 0.001

END

202 A SALINAS EXAMPLE INPUT FILES

BLOCK 1
material 1

END

MATERIAL 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

END

LOADS
nodeset 3

force = 1. 1. 1.
function = 3

END

FUNCTION 2
// this is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945
type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 10000. 1.0

END

SENSITIVITY
vectors all

END

A.6 A Directfrf Input File 203

A.6 A Directfrf Input File

The next example shows the input for a directfrf analysis. Displacements are
output to an Exodus file bar-out.frq.

SOLUTION
directfrf
END

Frequency
freq_min = 1000.0
freq_step = 7000
freq_max = 5.0e4
disp
block 1

End

FILE
geometry_file ’bar.exo’

END

OUTPUTS
disp
END

ECHO
//
none
END

BOUNDARY
nodeset 1

fixed
END

BLOCK 1
material 1

END

204 A SALINAS EXAMPLE INPUT FILES

MATERIAL 1
name "aluminum"
G 0.8E+9
K 4.8E+9
density 2.59e-4

END

LOADS
sideset 1
pressure = -1.0
function=3

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 10000. 1.0

END

A.7 A Statics Input File 205

A.7 A Statics Input File

The following example is a statics analysis which will output stresses to the Exo-
dus output file quadt-out.exo.

SOLUTION
statics
title ’10x1 beam of quadt’

END

FILE
geometry_file ’quadt.exo’

END

BOUNDARY
nodeset 1
fixed

END

LOADS
nodeset 2
force = 1000.0 1000.0 0.0

END

OUTPUTS
stress

END

ECHO
none

END

// the following element block is quadt
BLOCK 1

material 1
QuadT

END

MATERIAL 1
name "steel"

206 A SALINAS EXAMPLE INPUT FILES

E 30.0e6
nu 0.25e0
density 0.7324e-3

END

207

B Running Salinas on serial UNIX platforms

On serial unix platforms, Salinas is run with a single argument, the ASCII input
file.

salinas example.inp

The log file will be written to example.rslt if outputs have been specified in the
ECHO section. If outputs have been specified in the OUTPUTS section, a new
exodus file will be generated. The file name is derived from the geometry file
specified in the ASCII input (see section 2.11).

208 B RUNNING SALINAS ON SERIAL UNIX PLATFORMS

209

C Running Salinas in Parallel

This section provides an example of how to perform an analysis on the Intel Teraflop
(janus) using Salinas. This implies that the execution of Salinas will be in parallel.
There is some overhead to running in parallel versus serial. Assuming a Salinas
text input file exists and an Exodus file exists which contains the finite element
model, the following steps are needed.

1. Decide on how many processors, nproc, are needed.

2. Create an input file for nem slice. The partition software can be executed on
a workstation to create a load balance file. The name of this file is specified
in the input file for nem slice, and usually has a .nem extension.

3. Create your workspace on janus on /scratch/tmp ?? - where ?? is (currently)
your choice of 1 thru 10.

4. Move the Salinas input file, Exodus file, and load balance file to your work
space on janus.

5. Create an input file for nem spread. Execution of nem spread (on janus)
with this input will create nproc Exodus files from the master Exodus file
and move them to the locations specified in the nem spread input file.

6. Modify the FILE section of the Salinas input file to agree with the number of
RAID disks available and the location of the subdomain Exodus files created
by nem spread.¶

7. Modify the ECHO section in the Salinas input file using the keyword sub-
domain to indicate which processors should produce text results files. Having
all processors output text results files is very slow for large models. By default
only the first subdomain will write an echo file.

8. Use the yod command to run Salinas in parallel.

9. Create an input file for nem join to join your results back into one Exodus
output file.

Each step is detailed in the following paragraphs. Additional information on parallel
execution can be found at http://jal.sandia.gov under the SEACAS documentation
link.

¶RAID - Redundant Array of Inexpensive (or Independent) Disks. These are very important
to the performance of a parallel computer. Most are no longer independently addressable so the
numraid should be 1.

210 C RUNNING SALINAS IN PARALLEL

C.1 Number of Processors Needed

Running Salinas in parallel requires the user to specify how many processors at a
minimum are needed in order to “fit” the problem into available memory on janus.
First, determine approximately how many degrees of freedom (d.o.f.) are in the
model. Then, table 36 can be used to determine the number of processors needed.

Platform Name Num Procs Needed
ASCI White dofs/30, 000
ASCI Q dofs/30, 000
ICC dofs/30, 000
ASCI Red dofs/10, 000
Cplant dofs/30, 000
Rogue dofs/30, 000

Table 36: Determining Number Of Processors Needed

C.2 Use nem slice (or yada) to load balance the model

An example of a nem slice input file is, e.g. junk slice.inp,

Graph Type = elemental
Decomposition Method = multikl,cnctd_dom
Input ExodusII File = junk.exo
Output NemesisI File = junk.nem
#Solver Specifications
Machine Description = mesh=500
Misc Options = face_adj
#Weighting Specifications

This input file will create a load balance file, junk.nem, for running Salinas on 500
processors. Note, the face adj option is useful for 3-d models to prevent mecha-
nisms from appearing in the decomposed subdomains and is highly recommended
for optimal performance.

To create the load balance file, junk.nem, simply type

workstation_prompt> nem_slice -a junk_slice.inp

C.3 Janus Work Space 211

Or, if using yada to create the load balance file,

workstation_prompt> yada junk.exo 500

The load balancing software, nem slice or bf yada, is typically executed on a serial
machine such as a workstation. More detailed information on nem slice is available
at http://jal.sandia.gov under the link to the SEACAS documentation, and for
locating yada on a particular platforms, see section D.2.

C.3 Janus Work Space

To run Salinas in parallel, work space on janus is needed. On the /scratch space
on janus, there are 10 temp directories. Simply choose one, and make a directory
using your username, as follows.

janus> cd /scratch/tmp_1
janus> mkdir $USER

After the work space on janus is set up, move the Salinas input file, Exodus file,
and load balance file (junk.nem) to it.

C.4 Using Nem spread

The load balanced Exodus database must be “spread” to nproc mini-databases.
Each processor reads from its own data file. An example nem spread input file is,
e.g. junk spread.inp.

Input FEM file = junk.exo
LB file = junk.nem
Debug = 4
--

Parallel I/O section
--
Parallel Disk Info = number=18
Parallel file location = root=/pfs_grande/tmp_, subdir=username

Here, username must be replaced by the name of the user.

The Exodus file and the load balance file need to be defined in the nem spread
input file. There are 18 RAID disks currently available on janus. These are the
number of disks available to which input/output can be performed in parallel. The

212 C RUNNING SALINAS IN PARALLEL

FILE section in the Salinas input file needs to have the number of raids defined
using the keyword numraid. Therefore, for janus, numraid 18, must appear in
the Salinas input file. This number must match the parallel disk info line in the
nem spread input file.

If running for the first time on janus, proper directories must be established on the
RAID disks. Currently, the raids are setup at /pfs grande/tmp ?? where ?? is a
number between 1 and 18 (18 raids). A few csh shell commands can make the
required directories.

janus> foreach i (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
foreach? mkdir /pfs_grande/tmp_$i/$USER
foreach? end
janus>

To execute nem spread,

janus> /cougar/bin/yod -sz 4 nem_spread junk_spread.inp

For information on workspace locations for various platforms, see section D.4.

This execution of nem spread will spread nproc Exodus files onto the RAID disks
specified in the input file for nem spread. This location must also be specified in
the FILE section of the Salinas input file as follows, assuming your load balance
file is junk.nem created for 500 processors,

FILE
geometry_file ’/pfs_grande/tmp_%d/username/junk.par.500.%.3d’
numraid 18

END

The “%d” after tmp is used in Salinas in conjunction with the number of RAIDs
available. The “%.3d” at the end of the line for the geometry file is used in
conjunction with how many processors the load balance file was created with. The
following table shows what must be used after junk.par.nproc for various processors
requested.

Condition Use this
nproc<10 “%.1d”

10≤nproc<100 “%.2d”
100≤nproc<1000 “%.3d”

1000≤nproc<10000 “%.4d”

C.5 Salinas FILE Section 213

Since nem spread is a parallel code, yod must be used to execute it, using the
-sz option to specify how many processors are needed. This number need not agree
with the number of processors for execution of the analysis. Typically no more than
20 processors would be used to spread files. The showmesh utility can be used to
indicate the number of interactive processors available.

C.5 Salinas FILE Section

If a load balance file junk.nem is created for execution of Salinas for 500 processors,
and the number of raids is 18, then the FILE section of the Salinas input file must
look like the following.

FILE
numraid 18
geometry_file ’/pfs_grande/tmp_%d/username/junk.par.500.%.3d’

END

C.6 Running Salinas

Once the necessary setup has been done, and a parallel Salinas code exists in your
work space, then

janus> cd /scratch/tmp_1/$USER
janus> yod -sz 500 salinas junk.inp

This will run Salinas in parallel on 500 processors using the input file junk.inp.‖

In practice, only a small number of processors are available interactively on janusor
any other parallel platform. To use a larger number of processors, the NQS queuing
system must be used. Help is available under the man pages on janus under the
topics qsub and qstat. To submit an NQS submission, create a small shell script,
such as the following.

janus> cat run_it
#!/bin/sh
date
cd /scratch/tmp_1/$USER
yod -sz 500 salinas junk.inp
date

‖yod is the command used on this platform to start a parallel run. On other platforms it may
be mpirun(most Linux), poe(IBM) or some other command.

214 C RUNNING SALINAS IN PARALLEL

The NQS job is submitted using qsub with a command such as the following.

/usr/bin/qsub -lT 90:00 -lP 500 -q snl.day -me run_it

This command submits a 90 minute run using 500 processors to the queue snl.day.
A message will be mailed to you when the run has completed, and output from stan-
dard out and standard error will be found in files in your working directory. Status
of your run can be obtained using qstat. Status of all NQS submissions is available
with qstat -a or qstat -av. Contact janus-help@sandia.gov for information on
queueing policies and options.

For more information on submitting jobs on various platforms, see section D.5.

C.7 Using Nem join

Once the analysis run has been completed, the output exodus files will need to be re-
combined into a single file for visualization and processing. Nem join accomplishes
this process. A Nem join input file is very similar to the nem spread input file.
An example input file is, e.g. junk join.inp.

Input FEM file = junk.exo
Scalar Results FEM file = junk-out.exo
Use Scalar Mesh File = yes
Parallel Results file base name = junk-out.par
Number of processors = 500
Debug = 4
--

Parallel I/O section
--
Parallel Disk Info = number=18
Parallel file location = root=/pfs_grande/tmp_,subdir=username

To run nem join, simply do the following:

janus> yod -sz 4 nem_join junk_join.inp

This will create a file junk-out.exo in your current directory by combining all the
Exodus output files located on the RAID disks. This is a standard Exodus file
which may be visualized and processed using serial tools.

215

D Execution of Salinas on Various Platforms

D.1 Logging On

Please consult table 37.

ASCI White (SCN) From wizard LAN: ssh edison
From edison: ssh asciwhite.scf.cln

ASCI Q (SCN) From wizard LAN: ssh edison
From edison: ssh qfe1.lanl.gov
From qfe1: llogin

ICC (SCN) From edison: ssh freedom
ASCI Red (SCN) From wizard LAN: ssh janus-s

From edison: ssh janus-s
Cplant (SCN) From wizard LAN: ssh ronne

From edison: ssh ronne
ASCI Red (SRN) From SCICO LAN: ssh janus
ICC (SRN) From SCICO LAN: ssh liberty
Rogue (SRN) From SCICO LAN: ssh rogue
CPLANT (SRN) From SCICO LAN: ssh ross

Table 37: How To Log On To Various Platforms

D.2 Location Of Salinas Files

Please visit http://jal.sandia.gov/Salinas and click on the platforms link on the
left. Then click on the link about locations of Salinas files.

D.3 Location Of SEACAS/ACCESS Files

Please visit http://jal.sandia.gov/SEACAS/SEACAS.html for locations of files like
nem spread, nem join, and nem slice.

D.4 Workspace Area

Please consult table 38.

216 D EXECUTION OF SALINAS ON VARIOUS PLATFORMS

ASCI White /p/gw1/USERID
/p/gw2/USERID

ASCI Q /scratch1/USERID
/scratch2/USERID

ICC (SCN) Input files in: /home/USERID
Par file in: /scratch[1-3]/USERID

ASCI Red (SCN) Input files in: /scratch/tmp [1-10]/USERID
Par files to: /pfs grande/tmp [1-18]/USERID

CPLANT (SCN) /enfs/tmp/USERID
ASCI Red (SRN) Input files in: /scratch/tmp [1-10]/USERID

Par files in: /pfs grande/tmp [1-18]/USERID
ICC (SRN) Input files in: /home/USERID

Par file in: /scratch[1-2]/USERID
Rogue /u1/USERID (not /u0 home area)
CPLANT (SRN) /enfs/tmp/USERID

Table 38: Where To Put Files On Various Platforms

D.5 Submitting A Job

Please consult table 39 on how to submit jobs on various platforms. Note that the
submission for CPLANT and ASCI Red requires queue names. For most jobs using
snl queue on ASCI Red and using default on Cplant will work. However, if problems
arise using these queue names, please visit http://jal.sandia.gov/Salinas and click
on platforms and then click on links to general information for running on
a variety of platforms for further information.

ASCI White /usr/local/bin/psub script
ASCI Q /lsf/bin/bsub script
ICC (SCN) /apps/openpbs/bin/qsub script
ASCI Red (SCN) /usr/bin/qsub -lT 3:00:00 -lP 400 -q queue script
Cplant (SCN) /bin/qsub -l walltime=23:00:00,size=120 -q queue script
ASCI Red (SRN) /usr/bin/qsub -lT 3:00:00 -lP 400 -q queue script
ICC (SRN) /apps/openpbs/bin/qsub script
Rogue /usr/local/pbs/i686/bin/qsub script
Cplant (SRN) /bin/qsub -l walltime=23:00:00,size=120 -q queue script

Table 39: How To Submit Jobs On Various Platforms

D.6 Checking Job Status 217

D.6 Checking Job Status

Please consult table 40 on how to check the status of jobs on various platforms.

ASCI White /usr/local/bin/pstat
/usr/local/bin/spjstat
/usr/local/bin/spj

ASCI Q /lsf/bin/bjobs
/lsf/bin/bqueues

ICC (SCN) /apps/openpbs/bin/qstat
/apps/maui/bin/showbf

ASCI Red (SCN) /usr/bin/qstat
/cougar/bin/showmesh

CPLANT (SCN) /bin/qstat
/cplant/bin/showmesh
/cplant/sbin/pingd

ASCI Red (SRN) /usr/bin/qstat
/cougar/bin/showmesh

ICC (SRN) /apps/openpbs/bin/qstat
/apps/maui/bin/showbf

Rogue /usr/local/pbs/i686/bin/qstat
/opt/xcat/bin/pbstop
/usr/local/maui/i686/bin/showbf

CPLANT (SRN) /bin/qstat
/cplant/bin/showmesh
/cplant/sbin/pingd

Table 40: How To Check Job Status On Various Platforms

D.7 Sample Scripts

This section gives some example scripts for various platforms. This is only intended
to help a user get started quickly. Please visit http://jal.sandia.gov/Salinas and
click on platforms on the left side of the page, then click on links to general
information for running on a variety of platforms for further information.

D.7.1 ASCI White

The following script is a sample script used on ASCI White.

218 D EXECUTION OF SALINAS ON VARIOUS PLATFORMS

#!/bin/csh
#PSUB -ln 7
#PSUB -lg 99
#PSUB -c pbatch
#PSUB -tM 1000
#PSUB -lc 10
#PSUB -c 16000Mb
setenv MP_COREFILE_FORMAT STDERR
setenv MP_CSS_INTERRUPT yes
setenv MP_USE_FLOW_CONTROL yes
setenv MP_SHARED_MEMORY yes
setenv MP_THREAD_STACKSIZE 10M
unsetenv MP_INFOLEVEL

cd /p/gw1/USERID/wherever
/usr/bin/poe ./salinas hexplate.inp

The #PSUB -ln 7 requests 7 nodes. On ASCI White there are 16 processors
per node, but every processor on each node does not have to be used. In fact, it is
recommended that only 15 processors per node be used. Therefore, only 15×7 = 105
processors should be requested if asking for 7 nodes. The #PSUB -lg 99 requests
that only 99 processors be used on these 7 nodes. The remainder of the script should
be left the same except for the cd /p/gw1/USERID/wherever line and the poe
./salinas hexplate.inp line. This information should be changed based on where
the workspace area is and what the input file name for the analysis is.

D.7.2 ASCI Q

The following script is a sample script used on ASCI Q.

#!/bin/tcsh -f
#BSUB -o /scratch1/USERID/junk.out
#BSUB -e /scratch1/USERID/junk.err
#BSUB -n 60
#BSUB -W 1:00
#BSUB -L /bin/tcsh
#BSUB -J test_job
#BSUB -q snlq

source /opt/modules/modules/init/tcsh
module load MPI_64bit_R5

D.7 Sample Scripts 219

module load CXX_6.5.2
module load fortan_5.5.0

cd /scratch1/USERID
/usr/bin/prun ./salinas hexplate.inp

The #BSUB -n 60 requests 60 processors. Most of the file is obvious and has
similar characteristics to other scripts.

D.7.3 ASCI Red (SCN and SRN)

The following script is a sample script used on ASCI Red.

cd /scratch/tmp_3/USERID
/cougar/bin/yod -sz 100 ./salinas hexplate.inp

Again, the above script should be changed according to the location of the workspace
and the name of the salinas input file.

D.7.4 CPLANT (SCN or SRN)

The following script is a sample script used on CPLANT.

cd /enfs/tmp/USERID
/cplant/bin/yod -sz 100 ./salinas hexplate.inp

Again, the above script should be changed according to the location of the workspace
and the name of the salinas input file.

D.7.5 ICC (SCN or SRN)

The following script is a sample script used on ICC (SRN).

#!/bin/tcsh
#PBS -A 23232/01.2.22
#PBS -l nodes=48:ppn=2
#PBS -l walltime=03:00:00
cd /home/USERID/wherever
/apps/mpiexec/bin/mpiexec -np 95 ./salinas hexplate.inp

The #PBS -A 23232/01.2.22 is the line that specifies the project and task that
will be billed for using the ICC. The #PBS -l nodes=48:ppn=2 requests 48
nodes and 2 processors per node for a total of 96 processors. However, the mpiexec
only uses 95 of the 96. Finally, the above script should be changed according to the
location of the workspace and the name of the salinas input file.

220 D EXECUTION OF SALINAS ON VARIOUS PLATFORMS

D.7.6 Rogue

The following script is a sample script used on Rogue when using an IP executable.

#!/bin/bash
#PBS -l nodes=1:ppn=2,walltime=3:00:00
#PBS -N hexplate
#PBS -q serial
cd /u1/USERID/junk
/usr/local/mpi/sierra/mpich/1.2.5.2/gcc-3.2.2/bin/mpirun -np 2
-machinefile $PBS_NODEFILE ./salinas hexplate.inp

The following script is a sample script used on Rogue when using a GM executable.

#!/bin/bash
#PBS -l nodes=1:ppn=2,walltime=3:00:00
#PBS -N hexplate
#PBS -q scico

cd /u1/mkbhard/hexplate
/usr/local/mpi/sierra/mpich/1.2.5..12-gm-2.0.12/gcc-3.2.2/bin/mpirun.ch_gm
-v --gm-kill 5 PBS_JOBID=$PBS_JOIBID DISPLAY=head01:0 -TMPNAME=/scr/$PBS_JOBID
-np 2 -machinefile $PBS_NODEFILE ./salinas_gm hexplate.inp

Note that in the above two scripts, the user only has to change the number of nodes
being requested, the walltime, the name of the salinas executable, the name of the
salinas input file, and the number of processors for the -np argument.

D.8 Special Considerations

On CPLANT (ROSS or RONNE), the input files should be located in the parallel
file system listed in table 38. However, in order to utilize the parallel file system
optimally, the geometry file in the Salinas input file needs “enfs:” as a prefix,
e.g., a FILE section in a typical Salinas input file should look as follows when
running on CPLANT:

FILE
geometry_file "enfs:/enfs/tmp/mkbhard/aff/temp%d/aff.128.par.%.3d"
numraid 1

END

D.8 Special Considerations 221

Also, sometimes Salinas will abort on CPLANT with the message ”Too Many
Unexpected Messages”. This is an MPI implementation issue on CPLANT. One fix
is to set the following environment variable: setenv MPI UNEX MAX 2048,
2048 is the maximum number allowed for this. While this does not always fix the
problem, for certain small problems it does the trick.

222 D EXECUTION OF SALINAS ON VARIOUS PLATFORMS

223

E CF FETI

We have found it advantageous to maintain a stable, fixed linear solver, while contin-
uing significant significant solver development with Charbel Farhat originally at the
University of Colorado at Boulder (or CU), and now at Stanford University. How-
ever, in many respects the stable version is some sort of copy of the development
code, called “CF” code.

E.1 Features of CF solver

The current CF solver has a number of features that we have not yet merged into the
stable version. This may warrant use of this code for some analysis. The primary
features are listed below.

Complex Solver The templated nature of this code permits solution of both real
and complex systems of equations. This means that the solver may be used
for direct frequency response calculations in parallel.

Contact The solver is designed to understand contact. While we have limited
experience to report at this time, the solver takes the contact information and
computes the response directly. In this sense, it is a nonlinear solver. It is
anticipated that this methodology could permit much more efficient calculation
of contact response.

Mortars The solver also directly accepts Tied Surface information (see section
2.17). Again, internal to the solver, appropriate mortar elements are con-
structed, and solution is performed. Use of mortar elements provides a means
of consistently computing the response at an interface. Thus, mismatched
meshes should still pass the patch test. We also hope to be able to better han-
dle the large numbers of constraints that can be introduced at these surfaces.

E.2 Limitations of the Solver

There are some limitations and restrictions that should be understood in using this
solver.

Parameters Some parameters are invalid, and others are added to provide the
additional functionality. See the table below.

Robustness

Constraints Constraints are currently not supported in the complex portion of the
solver. This will soon change. 1-27-04.

224 E CF FETI

Testing While we have tested the solver on our test suite, there is much less avail-
able history at Sandia for the solver. Some testing also occurs at Stanford of
course.

The following table lists parameters that are added, deleted or modified with
respect to the Sandia FETI-DP solver. For the standard parameters see section 2.4
and table 7.

Table 41: CF FETI Parameter Modifications

Parameter Change Description
rbm method modify only geometry accepted
outerloop solver add cg, gmres
corner aug rbm type add translation, all, none
corner algorithm modify integer
numWaveDirections add integer
crbm tol add Real number
weighting add Topological, Stiffness
mpc method add Dual, Primal
mpc submethod add None, Full, PerFace, PerSub, Diag, BlockDiag
mpc tol add Real number
pivoting add on, off
mpc solver add skyline, sparse, spooles
mpc weighting add topological, stiffness
multibody add 0, 1 or 2

Some of these parameters are described below.

corner algorithm These are different from the FETI-DP parameters.

1 standard old

3 Three per neighbor

5,6,7,8 use nQ= 1, 2, 3, and 4 respectively, where nQ+2 is # of touching
subdomains

numWaveDirections number of wave directions used to construct Q matrix in
FETI-DPH. range 0-13, default = 3.

multibody If equal to “0” use externally defined body parameter passed in CF Feti
constructor. For multibody = “1” we force all subdomains to be treated as

E.2 Limitations of the Solver 225

a single body. For multibody = “2” then use the FETI DPC cornerMaker to
find bodies. The default is “0”.

Regarding multibody problems such as contact and tied surfaces, there are
three alternatives for determining which body each subdomain belongs to.
The default ”multibody 0” is to do the body decomposition on the salinas
side and pass the body id to the CF FETI constructor. This is currently not
implemented, you are just setting body = 1 in CF FetiSolver.C for all cases
which obviously won’t work for multibody. However, by selecting ”multibody
2” you can choose to ignore the salinas body decomposition and let the our
CornerMaker algorithm do it for you. Unfortunately this algorithm doesn’t
always get it right for some odd cases, and although we are working to improve
it you will eventually need to implement the body decomposition on your
side because our CornerMaker is CMSoft and will have to be replaced with
Kendall’s CornerMaker which doesn’t do this. The third option is ”multibody
1” which forces all subdomains to be treated as a single body.

As currently implemented, it is necessary for every body to be totally inde-
pendent (i.e. not share any nodes or RBMs) with the exception that they can
be connected by MPCs. So to solve a problem with a mechanism you need
to split the body containing the mechanism into 2 or more bodies (creating
duplicate nodes as required) and then re-tie them with MPCs. This could
possibly be done as a pre-processing step on the salinas side.

226 E CF FETI

Index

+/-, 123
#include, 2, 191

acceleration, 58, 84
accelX, 75
accelY, 75
accelZ, 75
Acknowledgments, 187
acoustic load, 78
anisotropic, 96, 97
Anisotropy, 193
apartvel, 66
apressure, 66
ARPACK, 15, 42, 65, 187
autospc, 44

BAR, 141
BEAM, 141
Beam2, 56, 139, 139–141
bending factor, 136
beta, 126
bifurcation method, 128
bifurcation parameter, 128
blkalpha, 91, 93
blkbeta, 91, 93
BLOCK, 1, 90, 93, 95
Block, 90, 165

General Parameters, 91
block, 54, 70, 172
body, 77
Boundary, 21, 74, 74, 180
branch switch, 131
buckling, 15

case, 5
CBModel, 11, 117, 119
CBR, 11
Ceigen, 6

CF, 38
CF FETI, 38, 223, 224
checkout, 8
Cij, 96
Citations, 188
CJdamp, 8, 104
CJetaFunction, 8, 104
Clip, 52

Parameters, 52
Clop, 50

Parameters, 50
CMS, 11
color domains, 180
Command Line

parallel janus, 209
serial unix, 207

comments, 1
complex load, 82
Component Mode Synthesis, 11
condition limit, 45
ConMass, 141, 141
ConMassA, 141
consistent loads, 81
consistent mass, 40
constraintmethod, 40
Contact, 85
continuation, 10
continuation parameter, 128
continuation restart file, 128
continuation restart index, 131
coordinate, 69, 70, 91, 93, 104, 104
corner

algorithm - table, 49
algorithms, 48
augmentation - table, 49
parameter - table, 49
selection, 48

227

228 INDEX

corner nodes, 48, 50
corner.data, 179
Craig-Bampton Reduction, 11

Damper, 145
viscous, 145

damper, 156
Damping, 21, 125, 125

Block, 92
Dashpot, 145
dashpot, 157
datafile, 116, 117
Dead, 173, 173
dead, 173
Decomposition, 209
delta, 117
density, 103
diagnostics, 178

beams, 67
grope, 178
kdiag, 66
verde, 178
zero energy modes, 179

dimension, 84, 116
Direct FRF Example, 203
directfrf, 12, 17, 203
disp, 57
disp0, 75
displacement, prescribed, 74
dmax, 147
dmax,kmax, 147
dump, 13

E, 96
ECHO, 52, 54, 60, 66, 73, 191, 209
Echo, 52, 135
echo, 21, 69
eforce, 62
eig tol, 42
eigen, 13, 15

eigen tolerance, 42
Eigenanalysis

example, 191
eigenk, 15
eigenvector restart file, 131
eigenvector restart index, 131
eigenvector restart method, 131
elastic-plastic, 155
ElemEigChecks, 56
Element

Beam2, 139
ConMass, 141
Dashpot, 145
Dead, 173
Force output, 62
Gap, 157
Gap2D, 160
GasDmp, 163
Hex20, 132
Hex8, 132
HexShell, 137
Hys, 146
Joint2G, 149

Property, 150, 155–157
Mass, 141
mortar, 223
OBeam, 141
Offset Shells, 136
orientation, 65
Quad8T, 133
QuadT, 133
Rigid

RBar, 166
RBE2, 166
RBE3, 166
RRod, 165

RSpring, 143
Shys, 147
Spring, 142
Spring3, 144

INDEX 229

Stress/Strain, 174
Superelement, 169
Tet10, 133
Tet4, 133
Tria3, 135
Tria6, 136
TriaShell, 135
Truss, 141
Truth Table, 174
Wedge15, 133
Wedge6, 132

Element Truth Table, 174, 175
element attribute, 128
Elemqualchecks, 56
end, 1
energy, 60
enforced acceleration, 75

random vib, 84
enforced displacement, 74
engineering units, 42
EOrient, 59
eorient, 65, 137, 176
eplas, 155
error metrics, 61
Example

Anisotropy, 193
Direct FRF, 203
Eigen, 191
Modal FRF, 201
Modal Transient, 199
multiple materials, 195
Statics, 205

exodus, 174
input, 209
results, 209, 214

Exterior, 127
extraNodes.dat, 48

faa, 56
Farhat, Charbel, 187

FEI
memory usage, 183

Felippa, Carlos, 187
FETI, 38, 46, 179

CF specific parameters, 224
CF Version, 223
coarse solver, 183
corner nodes, 48, 50
diagnostics, 48
global rigid body modes, 185
local rigid body modes, 184
local solver, 183
multiple right-hand-sides, 184
options affecting memory, 184
orthogonalization vectors, 184
parameters example, 182
preconditioner, 183
Tutorial, 182

FETI-DP, 48
FILE, 33, 55, 71, 72, 209, 212, 213
File, 71
file, 33, 119, 131
fixed, 74
flush, 26, 30
fmax, 147
force, 62, 78
forces, 65
format, 118
freq max, 12, 18–20, 22, 29
freq min, 12, 18–20, 22, 29
freq step, 12, 18–20, 22, 23, 29
Frequency, 70
frequency, 12, 19–22, 29, 71
function, 20, 23, 75, 82, 84, 106, 106,

117
linear, 107
loglog, 110
polynomial, 109
random, 110
rtc, 111

230 INDEX

table, 108
user defined, 111

G, 96
Gap, 157, 157, 160, 162

ellipsoidal, 160
Joint2G, 155

gap, 155
Gap2D, 160, 160
GasDmp, 163
GasDmp , 163
Generalized Alpha integrator, 31
GEnergies, 60
Genfac, 39
geometry file, 33, 71, 180, 212
global variables, 64
GlobalSolution, 118
gravity, 78
Grope, 178

harwellboeing, 61
Hex20, 132
Hex8, 132, 132
Hex8b, 132
Hex8F, 132
Hex8u, 132
HexShell, 137, 138
History, 69, 119
History Files, 69
Hys, 146, 146–148
Hysteresis element

cubic, 146

iforce, 82
igravity, 82
imoment, 82
include, 2
Info, 44
Integrator, 31
Invoking Salinas, 207, 209
ipressure, 82

isotropic, 96
isotropic viscoelastic, 96
iterations, 123
itraction, 82
Iwan, 149, 152

janus, 209
Johnson, Conor, 8
joining files, 214
Joint2G, 149, 149, 150, 155, 157

K, 96
kaa, 56
kdiag, 66, 181
keepmodes, 19, 20
kmax, 147
kmin, 147

Lagrange, 40
lambda, 128
lfcutoff, 19
linear, 107
linedata only, 33
linesample, 73
linesample file, 71, 72
LinkStiffness, 43
load, 6, 20, 23, 83, 83, 84, 128

complex, 82
consistent, 81

loads, 6, 16, 21, 23, 75, 76, 76, 78,
82–84

LOCA, 10, 128, 128
loglog, 107, 110
lumped, 40, 195
lumped mass, 40

maa, 56
Macroblock, 93, 95, 150
Martinez, David, 187
mass, 54

consistent, 40

INDEX 231

lumped, 40
non-structural, 93

mass properties, 54
mass=block, 54
Material, 96

Anisotropic example, 193
material, 103
matlab, 73
Matrix

file names, 63
output in mfile format, 63
RanLoads parameter, 84

matrix, 83
Matrix-Function, 114
matrix-function, 20, 84
max newton iterations, 24, 26
MaxResidual, 42
membrane factor, 136
memory, 48, 182–184
mesh discretization error, 61
mesh error, 61
Metis, 187
mfile, 62
mksuper, 170
modal acceleration, 17
Modal FRF example, 201
Modal Transient Example, 199
modal amp, 63
modalfrf, 12, 17, 18, 125, 201
ModalFv, 63
modalranvib, 19, 20, 125
modalshock, 22
modaltransient, 23, 37, 125, 199
Model Reduction, 11
moment, 78, 128
Mortar method, 223
mortar methods, 87
MPC, 163, 163, 164
mpc, 54

name, 96, 98
nastran

output4 in CBR, 118
ncdfout, 119
NegEigen, 11, 41, 42
nem join, 209, 214
nem slice, 179, 209–211
nem spread, 180, 209, 211, 213
NERSC, 39
netcdf, 118, 171
Newmark-Beta, 31
newmark beta, 32
Ng, Esmond, 39, 187
NLresiduals, 53
NLStatics, 10, 128
NLstatics, 24
NLtransient, 25
nmodes, 6, 11, 13, 15, 16, 18–20, 22,

23, 28, 125
node list file, 28
NodeListFile, 69, 76, 179
nodes, 52, 69
nodes none mesh, 52
nodeset, 69, 77, 89, 118
nominalt, 116
non-structural mass, 93
none, 52, 128
none nodes, 52
nonlinear, 91, 93
nonlinear default, 43, 92
noSVD, 19
NOX, 37, 39, 127
nrbms, 18
nskip, 22, 23, 26, 29, 30
nsm, 91, 93
nsteps, 22, 23, 26, 29, 30
nu, 96
num newton load steps, 10, 24, 26
numraid, 71, 72, 212
numraid 18, 212

232 INDEX

OBeam, 56, 141
off, 56
Offset Shells, 136
old transient, 30
OldBeam, 42
on, 56, 57
origin, 117
orthotropic, 96, 97
orthotropic layer, 97
orthotropic prop, 96, 97
OTM, 120
OTME, 120
OutElemMap, 120
OutMap, 120
OUTPUT, 55
output, 13, 19, 21, 45, 69
output vector, 118, 119
OUTPUTS, 56–62, 65, 66
Outputs, 55
outputs, 54, 55

P, 74
p0, 75
parallel, 209
parameter, 41
PARAMETERS, 11, 81, 166

Info, 44
Parameters, 41
Pdot, 75
plastic, 155
polynomial, 107
power spectral density, 21
Prelinas, 27
prescribed acceleration, 75
prescribed displacement, 74
pressure, 65, 78
Presto, 27, 73
Problematic Elements, 180
Problematic Subdomains, 180
Processor Count, 209

Prometheus, 39
Property, 150, 155–157
prt debug, 28, 50
prt debug 3, 179
PSD, 21, 84

Quad8T, 133, 133, 136
QuadT, 133, 133

Raghaven, Padma, 187
RAID disks, 209, 211, 212
RanLoads, 20, 83, 83, 84
ratiofun, 126
RBAR, 45, 89, 166
RBar, 166
RBE2, 166
RBE3, 166, 166–169
RBM, 179, 184, 184
Receive Sierra Data, 27
REFC, 167
References, 188
reorder rbar, 45
resid only, 65
residual, 64

global var, 64
non-linear norm, 53
vector, 53, 64

residual work, 64
residual absolute tolerance, 10
residual relative tolerance, 10
Restart

solution support, 37
restart, 35
Rho, 31
rho, 26, 30–32
rhs, 62
rigidset, 89, 89

limitations, 89
rigidsets, 89
RMS, 19, 60

INDEX 233

Rod see Truss, 141
RotaccelX, 75
RotaccelY, 75
RotaccelZ, 75
RotX, 74
RotY, 74
RotZ, 74
RROD, 165, 165
RSpring, 56, 142, 143, 143, 144
rtcfile, 113
Running

parallel, 209
serial, 207

S isotropic, 96, 98
scalaracoustic, 101
scalarstructuralacoustics, 40
scale, 40, 82
scaling

loads, 82
PSD, 84

Section Commands
Block, 90
Block Parameters, 90
Boundary, 74
Contact Data, 85
Coordinate, 104
Damping, 125
Echo, 52
FETI, 46
File, 71
Frequency, 70
Function, 106
History, 69
Load, 83
Loads, 76
LOCA, 128
Macroblock, 93
Material, 96
Matrix-Function, 114

NOX, 127
Outputs, 55
Parameters, 41
RanLoads, 83
Sensitivity, 121
Solution, 3
Table, 116
Tied Surfaces, 85

SENSITIVITY, 124
Sensitivity Analysis, 121
set

rigid, 89
Shells

Offset, 136
shift, 11, 13, 15–17, 23, 28
Shys, 147, 147, 149
shys, 155
sideset, 70, 77, 78, 89, 118, 138
sierra, 73
Sierra data, 27
sierra input file, 71, 73
size, 116
SkipMpcTouch, 44, 45
Smallwood, D. O., 153
SOLUTION, 10, 15, 17, 25, 27, 37, 40,

195
Solution, 1, 3, 35

Buckling, 15
CBR, 11
checkout, 8
CJdamp, 8
complex eigen, 6
continuation, 9
direct frequency response, 12
Eigen, 13
Eigen of stiffness, 15
Eigen of subdomain, 28
linear transient dynamics, 30
matrix output, 13
modal frequency response, 17

234 INDEX

modal random vibration, 19
modal transient response, 23
Multicase, 3

Parameter Table, 5
Parameters, 3

Multicase Time Stepping, 6
nonlinear statics, 24
nonlinear transient dynamics, 25
NOX nonlinear solver library, 37
Options, 35

constraint method, 40
lumped mass, 40
restart, 35
scale, 40
solver, 38

Receive Sierra Data, 27
shock response spectra from modes,

22
shock response spectra from tran-

sients, 29
statics, 27
Table of Arguments, 4
tangent stiffness matrix update, 28
thermal structural response preload,

32
solution, 3, 19, 20, 33
solve dfdp, 131
solver, 38

parameters, 50, 52
sparspak, 39
SPHERE, 141
spreading files, 209, 211
Spring, 56, 142, 142, 144

cubic, 144
Linear, 142
Parameter Values, 143
Rotational, 143

Spring3, 56, 144, 144
srs damp, 22, 23, 29
Stanford, 223

statics, 27, 205
Statics Example, 205
step size, 30
strain, 58
stress, 59, 60
Stress/Strain Recovery, 174
subdomain, 209
subdomain eigen, 28
subdomains, 73
sum, 56, 57
Superelement, 169, 169

parameters, 172
superelement, 121, 169, 172
SuperLU, 39, 187

Table, 116, 116
table, 107, 108
tablename, 109
tangent, 3, 28
TangentMethod, 43
tcoord, 138
Tet10, 133, 133
Tet4, 133, 133
thermal load, 45, 78–80
thermal time step, 45, 46, 81
TIED DATA, 86, 87
Tied Surfaces, 85
Time Integrator, 31
time step, 30
time step, 22, 23, 26, 29, 30
tolerance, 10, 24, 26, 123
traction, 78
Transform, 40
transhock, 29
transient, 26, 30
Tria3, 133, 135, 135, 136
Tria6, 133, 136, 136
TriaShell, 135, 135, 136, 176
Troubleshooting, 178
troubleshooting

INDEX 235

grope, 178
verde, 178
zero energy modes, 179

TRUSS, 141
Truss, 56, 141, 141
tsr preload, 32, 33

units of measure, 41, 42
Univ. Colo, 223
Univ. Colo, 187
Univ. Minn, 187
untilfreq, 13, 15
update absolute tolerance, 10
update relative tolerance, 10
update tangent, 24–26, 158
usemodalaccel, 18
User functions, 111

values, 121, 123
vectors, 121, 123
vectors none, 123
vel0, 75
velocity, 58
Verde, 178
viscofreq, 6, 7
viscous damper, 145
VonMises, 59, 60
vrms, 21, 60

warninglevel, 67
Wedge15, 133
Wedge6, 132, 132
work, 60
WtMass, 41, 54
wtmass, 84

X, 74

Y, 74
yada, 179, 180, 210
yod, 209, 213

Z, 74
ZEM, 179

	Introduction
	The Salinas Input File
	SOLUTION
	Multicase
	A Note On Time Stepping In Multicase Solutions
	Ceigen
	Checkout
	CJdamp
	Continuation
	Craig-Bampton Reduction
	Directfrf
	Dump
	Eigen
	Eigenk
	Buckling
	Modalfrf
	Modalranvib
	Modalshock
	Modaltransient
	NLStatics
	NLTransient
	Receive_Sierra_Data
	Statics
	Subdomain_Eigen
	Tangent
	Transhock
	Transient
	TSR_Preload

	Solution Options
	ReStart -- option
	NOX
	Solver
	Lumped -- option
	Constraintmethod -- option
	Scale -- option
	scalarstructuralacoustics -- option

	PARAMETERS
	FETI
	Corner Algorithms
	Levels of Diagnostic Output

	Clop
	CLIP
	ECHO
	Mass Properties
	Mpc

	OUTPUTS
	Maa
	Kaa
	Faa
	ElemEigChecks
	Elemqualchecks
	Displacement
	Velocity
	Acceleration
	Strain
	Stress
	VonMises
	VRMS
	Energy
	GEnergies
	Mesh_Error
	Harwellboeing
	Mfile
	Force
	rhs
	EForce
	Residuals
	Resid_only
	EOrient
	Pressure
	APressure
	APartVel
	KDiag
	Warninglevel

	HISTORY
	FREQUENCY
	FILE
	geometry_file
	Linesample
	sierra_input_file
	Additional Comments About Output

	BOUNDARY
	Prescribed Displacements
	Prescribed Accelerations
	Node_List_File

	LOADS
	Thermal Loads
	Consistent Loads
	Time Varying Loads
	Frequency Dependent Loads

	Load
	RanLoads
	Contact Data
	Tied Surfaces
	RigidSet
	BLOCK
	Block Parameters
	General Block Parameters

	Macroblock
	MATERIAL
	Isotropic Material
	Anisotropic Material
	Orthotropic Material
	Stochastic Material
	Linear Viscoelastic Material
	Acoustic Material
	Temperature-Dependent Material Properties
	Density
	CJetaFunction

	COORDINATE
	FUNCTION
	Linear Functions
	Functions using Tables
	Polynomial Functions
	LogLog Functions
	Random Functions
	User Defined Functions

	MATRIX-FUNCTION
	Table
	CBModel
	SENSITIVITY
	DAMPING
	Nonlinear transient solutions with damping

	EXTERIOR
	NOX
	LOCA

	Elements
	Hex8
	Hex20
	Wedge6
	Wedge15
	Tet4
	Tet10
	QuadT
	Quad8T
	TriaShell
	Tria3
	Tria6
	Offset Shells
	HexShell
	Beam2
	OBeam
	Truss
	ConMass
	Spring
	Spring Parameter Values

	RSpring
	Spring3 - nonlinear cubic spring
	Dashpot
	Hys
	Shys
	Iwan
	Joint2G
	Specification
	Constitutive Behavior

	Gap
	Gap2D
	GasDmp
	MPC
	RROD
	RBar
	RBE2
	RBE3
	Superelement
	Dead

	Stress/Strain Recovery
	Stress/Strain Truth Table
	Solid Element Stress/Strain
	Shell Element Stress/Strain
	Line Element Stress/Strain

	Troubleshooting
	Stand-Alone Tools
	Grope
	Verde

	Using Salinas To Troubleshoot
	Using The Node_List_File For Debugging Subdomains With ZEMs
	Identifying Problematic Subdomains
	Problematic Elements and Connectivity

	Troubleshooting FETI Issues
	Introduction
	Standard FETI Block
	Memory
	Local Rigid Body Modes
	Global Rigid Body Modes

	Acknowledgments
	References
	Salinas Example Input Files
	An Eigenanalysis Input File
	An Anisotropic Material Input File
	A Multi-material Input File
	A Modaltransient Input File
	A Modalfrf Input File
	A Directfrf Input File
	A Statics Input File

	Running Salinas on serial UNIX platforms
	Running Salinas in Parallel
	Number of Processors Needed
	Use nem_slice (or yada) to load balance the model
	Janus Work Space
	Using Nem_spread
	Salinas FILE Section
	Running Salinas
	Using Nem_join

	Execution of Salinas on Various Platforms
	Logging On
	Location Of Salinas Files
	Location Of SEACAS/ACCESS Files
	Workspace Area
	Submitting A Job
	Checking Job Status
	Sample Scripts
	ASCI White
	ASCI Q
	ASCI Red (SCN and SRN)
	CPLANT (SCN or SRN)
	ICC (SCN or SRN)
	Rogue

	Special Considerations

	CF FETI
	Features of CF solver
	Limitations of the Solver

	Index

